
The SyGuS Language Standard Version 2.1
Saswat Padhi Elizabeth Polgreen Mukund Raghothaman

Andrew Reynolds Abhishek Udupa

Sunday 8th August, 2021

1 Introduction
We present a language to specify instances of the syntax-guided synthesis (SyGuS) problem. An instance
of a SyGuS problem specifies:

1. The vocabularies, theories and the base types that are used to specify (a) semantic constraints on
the function to be synthesized, and (b) the definition of the function to be synthesized itself. We
refer to these as the input and output logics respectively.

2. A finite set of typed functions f1, . . . , fn that are to be synthesized.

3. The syntactic constraints on each function fi, i ∈ [1, n] to be synthesized. The syntactic constraints
are specified using context-free grammars Gi which describe the syntactic structure of candidate
solution for each of these functions. The grammar may only involve function symbols and sorts from
the specified output logic.

4. The semantic constraints and assumptions that describe the behavior of the functions to be synthesized.
Constraints are given as quantifier-free formulas φ and assumptions are given as quantifier-free
formulas α in the input logic, and may refer to the functions-to-synthesize as well as universally
quantified variables v1, . . . , vm.

The objective then is to find definitions ei (in the form of expression bodies) for each function fi such that
(a) the expression body belongs to the grammar Gi that is used to syntactically constrain solutions for fi,
and (b) the constraint ∀v1, . . . , vm. α =⇒ φ is valid in the background theory under the assumption that
functions f1, . . . , fn are interpreted as functions returning e1, . . . , en. Note that each ei is an expression
containing a fixed set of free variables which represent the argument list of the function fi.

Overview of This Document This document defines the SyGuS format version 2.0, which is intended
to be used as the standard input and output language for solvers targeting the syntax-guided synthesis
problem. The language borrows many concepts and language constructs from the standard format for
Satisfiability Modulo Theories (SMT) solvers, the SMT-LIB standard (version 2.6) [3].

Outline In the remainder of this section, we cover differences of the SyGuS format described in this
document with previous revisions [5, 1, 2] and cover the necessary preliminaries. Then, Section 2 gives the
concrete syntax for commands in the SyGuS input language. Section 3 documents the well-formedness
and the semantics of input commands. Section 4 documents the expected output of synthesis solvers
in response to these commands. Section 5 describes formally the notion of a SyGuS logic and how it
restricts the set of commands that are allowed in an input. Section 6 formalizes what constitutes a correct
response to a SyGuS input. Finally, Section 9 provides examples of possible inputs in the SyGuS language
and solvers responses to them.

1.1 Differences from Previous Versions
In this section, we cover the differences in this format with respect to the one described in the previous
version of the SyGuS format [5], and its extensions [1, 2].
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1.1.1 Changes from SyGuS 1.0 to SyGuS 2.0

1. The syntax for providing grammars inside the synth-fun command now requires that non-terminal
symbols are declared upfront in a predeclaration, see Section 3.4 for details.

2. The keyword Start, which denoted the starting (non-terminal) symbol of grammars in the previous
standard, has been removed. Instead, the first symbol listed in the grammar is assumed to be the
starting symbol.

3. Terms that occur as the right hand side of production rules in SyGuS grammars are now required
to be binder-free. In particular, this means that let-terms are now disallowed within grammars.
Accordingly, the keywords InputVariable and LocalVariable, which were used to specify input
and local variables in grammars respectively, have been removed since the former is equivalent to
Variable and the latter has no affect on the grammar.

4. The datatype keyword Enum and related syntactic features have been removed. The standard
SMT-LIB 2.6 commands for declaring datatypes are now adopted, see Section 3.5 for details.

5. The set-options command has been renamed set-option to correlate to the existing SMT-LIB
version 2.6 command.

6. The syntax for terms and sorts now coincides with the corresponding syntax for terms and sorts
from SMT-LIB versions 2.0 and later. There are three notable changes with respect to the previous
SyGuS format that come as a result of this change. First, negative integer and real constants must
be written with unary negation, that is, the integer constant negative one must be written (- 1),
whereas previously it could be written -1. Second, the syntax for bit-vectors sorts (BitVec n) is
now written (_ BitVec n). Third, all let-bindings do not annotate the type of the variable being
bound. Previously, a let-term was written (let ((x T t)) ...) where T indicates the type of t.
Now, it must be written in the SMT-LIB compliant way (let ((x t)) ...).

7. The signature, syntax and semantics for the theory of strings is now the one given in an initial
proposal [7] to SMT-LIB. Thus, certain new symbols are now present in the signature, and some
existing ones have changed names. The semantics of all operators, which was not specified previously,
is now consistent with that provided in the proposal [7].

8. The command declare-primed-var, which was a syntactic sugar for two declare-var commands in
the previous language standard, has been removed for the sake of simplicity. This command did not
provide any benefit to invariant synthesis problems, since constraints declared via inv-constraint
do not accept global variables.

9. The command declare-fun, which declared a universal variable of function type in the previous
language standard, has been removed.

10. A formal notion of input logics, output logics, and features have been defined as part of the SyGuS
background logic, and the command set-feature has been added to the language, which is used for
further refining the constraints, grammars and commands that may appear in an input.

11. The expected output for fail responses from a solver has changed. In particular, the response
(fail) from the previous language standard should now be provided as fail, that is, without
parentheses. Additionally, a solver may answer infeasible, indicating that it has determined there
are no solutions to the given conjecture.

1.1.2 Changes from SyGuS 2.0 to SyGuS 2.1

1. We introduce the command assume, which introduces a list of assumptions α, and the synthesis
conjecture is now ∃f1, . . . , fn. ∀v1, . . . , vm. α =⇒ φ.

2. Oracle constraints are introduced. Oracle constraints are constraints that are generated when an
external oracle is called with a concrete set of input values. The constraints are conjoined to the list
of constraints φ in the synthesis conjecture.
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3. Oracle assumptions are introduced. Oracle assumptions are assumptions that are generated when an
external oracle is called with a concrete set of input values. The assumptions are conjoined to the
list of assumptions α in the synthesis conjecture.

4. Oracle Functions are introduced. These are functional symbols whose interpretation is associated to
an external oracle. The functions are treated as universally quantified uninterpreted functions, and
calls to that external oracle place with concrete input values generate assumptions over the behavior
of the uninterpreted function. These assumptions are conjoined to the list of assumptions α in the
synthesis conjecture.

5. A set of new commands are introduced to enable easy specification of specific types of oracles, for
instance input-output oracles. These oracles are based on the formalization by Jha and Seshia [4].

6. A new theory of tables is referenced as a possible underlying theory in Section 5.1.

7. A new SyGuS logic, called CHC_X, has been introduced for specifying synthesis problems using
constrained Horn clause systems over an SMT-LIB base logic X.

8. A new command, chc-constraint, has been introduced for specifying constraints in the form of
constrained Horn clauses.

9. The synth-inv command, used within invariant synthesis (Inv_X) logic earlier, has been removed.
Instead, all functions (including predicates) to be synthesized are now specified using synth-fun.

10. The expected successful response for SyGuS solvers to a check-synth command is now enclosed in
parentheses.

11. A new command declare-weight, has been introduced for introducing user-defined weight attributes.

12. A new feature weights has been added, which allows weight annotations on terms, as well as the
use of weight symbols within terms, as described in Section 5.2.1.

13. A new command optimize-synth has been added for specifying optimization queries.

14. The signature, syntax and semantics for the theory of strings is now the one given in the official
version 2.6 release of the theory of Unicode strings [3].

1.2 Preliminaries
In this document, we assume basic standard notions of multi-sorted first-order logic. We assume the
reader is familiar with sorts, well-sorted terms, (quantified) formulas and free variables1 If e is a term or
formula, then we write e[x] to denote that x occurs free in e, and e[t] to denote the result of replacing all
occurrences of x by t. We write λx⃗. t[x⃗] to denote a lambda term, that is, an anonymous function whose
argument list is x⃗ that returns the value of t[s⃗] for all inputs x⃗ = s⃗. Given an application of a lambda
term to a concrete argument list s⃗, i.e. the term (λx⃗. t[x⃗(s⃗), then its beta-reduction is the term t[s⃗]. We
use ≈ to denote the binary (infix) equality predicate.

2 Syntax
In this section, we describe the concrete syntax for the SyGuS 2.0 input language. Many constructs in
this syntax coincide with those in SMT-LIB 2.6 standard [3]. In the following description, italic text
within angle-brackets represents EBNF non-terminals, and text in typewriter font represents terminal
symbols.

A SyGuS input ⟨SyGuS⟩ is thus a sequence of zero or more commands.

⟨SyGuS⟩ ::= ⟨Cmd⟩∗

We first introduce the necessary preliminary definitions, and then provide the syntax for commands
⟨Cmd⟩ at the end of this section.

1The definition of each of these coincides with the definition given in the SMT-LIB 2.6 standard [3].
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2.1 Comments
Comments in SyGuS specifications are indicated by a semicolon ;. After encountering a semicolon, the
rest of the line is ignored.

2.2 Literals
A literal ⟨Literal⟩ is a special sequence of characters, typically used to denote values or constant terms.
The SyGuS format includes syntax for several kinds of literals, which are listed below. This treatment of
most of these literals coincides with those in SMT-LIB version 2.6. For full details, see Section 3.1 of the
SMT-LIB 2.6 standard [3].

⟨Literal⟩ ::= ⟨Numeral⟩ | ⟨Decimal⟩ | ⟨BoolConst⟩ |
⟨HexConst⟩ | ⟨BinConst⟩ | ⟨StringConst⟩

Numerals (⟨Numeral⟩) Numerals are either the digit 0, or a non-empty sequence of digits [0 − 9] that
does not begin with 0.

Decimals (⟨Decimal⟩) The syntax for decimal numbers is ⟨Numeral⟩ .0∗ ⟨Numeral⟩.

Booleans (⟨BoolConst⟩) Symbols true and false denote the Booleans true and false.

Hexidecimals (⟨HexConst⟩) Hexadecimals are written with #x followed by a non-empty sequence of
(case-insensitive) digits and letters taken from the ranges [A − F] and [0 − 9].

Binaries (⟨BinConst⟩) Binaries are written with #b followed by a non-empty sequence of bits [0 − 1].

Strings (⟨StringConst⟩) A string literal ⟨StringConst⟩ is any sequence of printable characters delimited
by double quotes " ". The characters within these delimiters are interpreted as denoting characters of the
string in a one-to-one correspondence, with one exception: two consecutive double quotes within a string
denote a single double quotes character. In other words, "a""b" denotes the string whose characters in
order are a, " and b. Strings such as "\n" whose characters are commonly interpreted as escape sequences
are not handled specially, meaning this string is interpreted as the one consisting of two characters, \
followed by n.
Literals are commonly used for denoting 0-ary symbols of a theory. For example, the theory of integer
arithmetic uses numerals to denote non-negative integer values. The theory of bit-vectors uses both
hexadecimal and binary constants in the above syntax to denote bit-vector values.

2.3 Symbols
Symbols are denoted with the non-terminal ⟨Symbol⟩. A symbol is any non-empty sequence of upper-
and lower-case alphabets, digits, and certain special characters (listed below), with the restriction that it
may not begin with a digit and is not a reserved word (see Appendix A for a full list of reserved words).
A special character is any of the following:

_ + - * & | ! ~ < > = / % ? . $ ^

Note this definition coincides with simple symbols in Section 3.1 of SMT-LIB version 2.6, apart from
differences in their reserved words.

Keywords (⟨Keyword⟩) Following SMT-LIB version 2.6, a keyword ⟨Keyword⟩ is a symbol whose
first character is :.
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2.4 Identifiers
An identifier ⟨Identifier⟩ is a syntactic extension of symbols that includes symbols that are indexed by
integer constants or other symbols.

⟨Identifier⟩ ::= ⟨Symbol⟩ | (_ ⟨Symbol⟩ ⟨Index⟩+ )
⟨Index⟩ ::= ⟨Numeral⟩ | ⟨Symbol⟩

Note this definition coincides with identifiers in Section 3.1 of SMT-LIB version 2.6.

2.5 Attributes
An attribute ⟨Attribute⟩ is a keyword and an (optional) associated value.

⟨Attribute⟩ ::= ⟨Keyword⟩ | ⟨Keyword⟩ ⟨AttributeV alue⟩

The permitted values of attribute values ⟨AttributeV alue⟩ depend on the attribute they are associated
with. Possible values of attributes include symbols, as well as (lists of) sorts and terms. The above
definition of attribute coincides with attributes in Section 3.4 of SMT-LIB version 2.6. All attributes
standardized in this document are listed in Section 8.

2.5.1 Weight Attributes

Beyond the SMT-LIB standard, we standardize one class of attributes, namely that of weights. Some
keywords we classify as weight keywords. In particular, we assume that :weight is the (builtin) weight
keyword. Additional weight keywords can be user-defined via the command declare-weight.

A weight attribute consists of a weight keyword and an attribute value that is a integer numeral. For
example, :weight 5 denotes the attribute associating the builtin weight keyword to 5. Terms can be
annotated with weight attributes (see Section 2.7.1), which will have a special semantics which we will
describe in detail in Section 5.2.1.

2.6 Sorts
We work in a multi-sorted logic where terms are associated with sorts ⟨Sort⟩. Sorts are constructed via
the following syntax.

⟨Sort⟩ ::= ⟨Identifier⟩ | ( ⟨Identifier⟩ ⟨Sort⟩+ )

The arity of the sort is the number of (sort) arguments it takes. A parametric sort is one whose arity is
greater than zero. Theories associate identifiers with sorts and sort constructors that have an intended
semantics. Sorts may be defined by theories (see Section 5.1) or may be user-defined (see Section 3.5).

2.7 Terms
We use terms ⟨Term⟩ to specify grammars and constraints, which are constructed by the following syntax.

⟨Term⟩ ::= ⟨Identifier⟩
| ⟨Literal⟩
| ( ⟨Identifier⟩ ⟨Term⟩+ )
| (! ⟨Term⟩ ⟨Attribute⟩+ )
| (exists ( ⟨SortedV ar⟩+ ) ⟨Term⟩ )
| (forall ( ⟨SortedV ar⟩+ ) ⟨Term⟩ )
| (let ( ⟨V arBinding⟩+ ) ⟨Term⟩ )

⟨BfTerm⟩ ::= ⟨Identifier⟩
| ⟨Literal⟩
| ( ⟨Identifier⟩ ⟨BfTerm⟩+ )
| (! ⟨BfTerm⟩ ⟨Attribute⟩+ )

⟨SortedV ar⟩ ::= ( ⟨Symbol⟩ ⟨Sort⟩ )
⟨V arBinding⟩ ::= ( ⟨Symbol⟩ ⟨Term⟩ )
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Above, we distinguish a subclass of binder-free terms ⟨BfTerm⟩ in the syntax above, which do not
contain bound (local) variables. Like sorts, the identifiers that comprise terms can either be defined by
the user or by background theories.

2.7.1 Term Annotations

In SMT-LIB, terms t may be annotated with attributes. The purpose of an attribute is to mark a term
with a set of special properties, which may influence the expected result of later commands. Attributes are
specified using the syntax (! t A1 . . . An) where t is a term and A1, . . . , An are attributes. An attribute
can be any The term above is semantically equivalent to t itself. Several attributes are standardized by
the SMT-LIB standard, while others may be user-defined.

2.8 Features
A feature ⟨Feature⟩ is a keyword denoting a restriction or extension on the kinds of SyGuS commands
that are allowed in an input. It is an enumeration in the following syntax.

⟨Feature⟩ ::= : grammars | : fwd-decls | : recursion | : oracles | : weights

More details on features are given in Section 5.2.

2.9 Commands
A command ⟨Cmd⟩ is given by the following syntax.

⟨Cmd⟩ ::= (assume ⟨Term⟩ )
| (check-synth)
| (chc-constraint ( ⟨SortedV ar⟩∗ ) ⟨Term⟩ ⟨Term⟩ )
| (constraint ⟨Term⟩ )
| (declare-var ⟨Symbol⟩ ⟨Sort⟩ )
| (declare-weight ⟨Symbol⟩ ⟨Attribute⟩∗ )
| (inv-constraint ⟨Symbol⟩ ⟨Symbol⟩ ⟨Symbol⟩ ⟨Symbol⟩ )
| (optimize-synth ( ⟨Term⟩∗ ) ⟨Attribute⟩∗ )
| (set-feature ⟨Feature⟩ ⟨BoolConst⟩ )
| (synth-fun ⟨Symbol⟩ ( ⟨SortedV ar⟩∗ ) ⟨Sort⟩ ⟨GrammarDef⟩? )
| ⟨OracleCmd⟩
| ⟨SmtCmd⟩

⟨OracleCmd⟩ ::= (oracle-assume ( ⟨SortedV ar⟩∗ ) ( ⟨SortedV ar⟩∗ ) ⟨Term⟩ ⟨Symbol⟩ )
| (oracle-constraint ( ⟨SortedV ar⟩∗ ) ( ⟨SortedV ar⟩∗ ) ⟨Term⟩ ⟨Symbol⟩ )
| (declare-oracle-fun ⟨Symbol⟩ ( ⟨Sort⟩∗ ) ⟨Sort⟩ ⟨Symbol⟩ )
| (oracle-constraint-io ⟨Symbol⟩ ⟨Symbol⟩ )
| (oracle-constraint-cex ⟨Symbol⟩ ⟨Symbol⟩ )
| (oracle-constraint-membership ⟨Symbol⟩ ⟨Symbol⟩ )
| (oracle-constraint-poswitness ⟨Symbol⟩ ⟨Symbol⟩ )
| (oracle-constraint-negwitness ⟨Symbol⟩ ⟨Symbol⟩ )
| (declare-correctness-oracle ⟨Symbol⟩ ⟨Symbol⟩ )
| (declare-correctness-cex-oracle ⟨Symbol⟩ ⟨Symbol⟩ )

⟨SmtCmd⟩ ::= (declare-datatype ⟨Symbol⟩ ⟨DTDecl⟩ )
| (declare-datatypes ( ⟨SortDecl⟩n+1 ) ( ⟨DTDecl⟩n+1 ))
| (declare-sort ⟨Symbol⟩ ⟨Numeral⟩ )
| (define-fun ⟨Symbol⟩ ( ⟨SortedV ar⟩∗ ) ⟨Sort⟩ ⟨Term⟩ )
| (define-sort ⟨Symbol⟩ ⟨Sort⟩ )
| (set-info ⟨Keyword⟩ ⟨Literal⟩ )
| (set-logic ⟨Symbol⟩ )
| (set-option ⟨Keyword⟩ ⟨Literal⟩ )
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⟨SortDecl⟩ ::= ( ⟨Symbol⟩ ⟨Numeral⟩ )
⟨DTDecl⟩ ::= ( ⟨DTConsDecl⟩+ )

⟨DTConsDecl⟩ ::= ( ⟨Symbol⟩ ⟨SortedV ar⟩∗ )

⟨GrammarDef⟩ ::= ( ⟨SortedV ar⟩n+1 ) ( ⟨GroupedRuleList⟩n+1 )
⟨GroupedRuleList⟩ ::= ( ⟨Symbol⟩ ⟨Sort⟩ ( ⟨GTerm⟩+ ))

⟨GTerm⟩ ::= (Constant ⟨Sort⟩ ) | (Variable ⟨Sort⟩ ) | ⟨BfTerm⟩

For convenience, we distinguish between three kinds of commands above. The commands listed under
⟨Cmd⟩ and ⟨OracleCmd⟩ are specific to the SyGuS format, with the latter pertaining to oracles. The
remaining commands listed under ⟨SmtCmd⟩ are borrowed from SMT-LIB 2.6. The semantics of these
commands are detailed in Section 3.

3 Semantics of Commands
A SyGuS input file is a sequence of commands, which at a high level are used for defining a (single)
synthesis conjecture, and invoking a solver for this conjecture. This conjecture is a closed formula of the
form:

∃f1, . . . , fn. ∀v1, . . . , vm. (α1 ∧ . . . ∧ αr) =⇒ (φ1 ∧ . . . ∧ φq)
We wil use Ψ to refer to the formula ∀v1, . . . , vm. (α1 ∧ . . . ∧ αr) =⇒ (φ1 ∧ . . . ∧ φq), and thus the
synthesis conjecture can be written ∃f1, . . . , fn. Ψ. In this section, we define how this conjecture is is
established via SyGuS commands. Given a sequence of commands, the current state consists of the
following information:

• A list f1, . . . , fn, which we refer to as the current list of functions to synthesize,
• A list v1, . . . , vm of variables, which we refer to as the current list of universal variables,
• A list of formulas φ = φ1, . . . , φq, which we refer to as the current list of constraints,
• A list of formulas α = α1, . . . , αr, which we refer to as the current list of assumptions,
• A signature denoting the set of defined symbols in the current scope. A signature is a mapping

from symbols to expressions (either sorts or terms). Each of these symbols may have a predefined
semantics either given by the theory, or defined by the user (e.g. symbols that are defined as macros
fit the latter category).

• A SyGuS logic denoting the terms and sorts that may appear in constraints and grammars.
In the initial state of a SyGuS input, the lists of functions-to-synthesize, universal variables, constraints,
assumptions, and the signature are empty, and the SyGuS logic is the default one (see Section 5 for
details).

In the following, we first describe restrictions on the order in which commands can be specified in
SyGuS inputs. We then describe how each command ⟨Cmd⟩ updates the state of the sets above and the
current signature.

3.1 Command Ordering
A SyGuS input is not well-formed if it specifies a list of commands that do not meet the restrictions given
in this section regarding their order. The order is specified by the following regular pattern:

({set logic command})? ({setter commands})∗ ({other commands})∗

where the set {set logic command} consists of the set of all set-logic commands, set {setter commands}
includes the set-feature and set-option commands, the set {other commands} include all the SyGuS
commands except the commands in the aforementioned two sets.

In other words, a SyGuS input is well formed if it begins with at most one set-logic command,
followed by a block of zero or more set-feature and set-option commands in any order, followed by
zero or more instances of the other SyGuS commands.
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3.2 Setting the Logic
The logic of a SyGuS specification consists of three parts — an input logic, an output logic and a feature set.
Roughly, the input logic determines what terms can appear in constraints, and the output logic determines
what terms can appear in grammars and solutions. The feature set places additional restrictions or
extensions on the constraints, grammars as well as the commands that are allowed in an input. These are
described in detail in Section 5.

• (set-logic L)

This command sets the SyGuS background logic to the one that L refers to. The logic string L can
be a standard one defined in the SMT-LIB 2.6 standard [3] or may be solver-specific. If L is an
SMT-LIB standard logic, then it must contain quantifiers or this command is not well-formed, that
is, logics with the prefix QF_ are not allowed.2 If this command is well-formed and L is an SMT-LIB
standard logic, then this command sets the SyGuS logic to the one whose input and output logics are
QF_L and whose feature set is the default one defined in this document (Section 5.2). In other words,
when this command has L as an argument and L is an SMT-LIB standard logic, this indicates that
that terms in the logic of L are allowed in constraints, grammars and solutions, but they are are
restricted to be quantifier-free. As a consequence, the overall synthesis conjectures allowed by default
when L is a standard SMT-LIB logic have at most two levels of quantifier alternation.

• (set-feature : F b)

This command enables the feature specified by F in the feature set component of the SyGuS
background logic if b is true, or disables it if b is false. All features standardized in SyGuS 2.0 are
given in Section 5.2.

3.3 Declaring Universal Variables
• (declare-var S σ)

This command appends S to the current list of universal variables and adds the symbol S of sort σ to
the current signature. This command should be rejected if S already exists in the current signature.

3.4 Declaring Functions-to-Synthesize
• (synth-fun S ((x1 σ1) . . . (xn σn)) σ G?)

This command adds S to the current list of functions to synthesize, and adds the symbol S of sort
σ1 × . . . × σn → σ to the current signature. This command should be rejected if S is already a
symbol in the current signature. We describe restrictions and well-formedness requirements for this
command in the following.
If provided, the syntax for the grammar G consists of two parts: a predeclaration ((y1 τ1) . . . (yn τn)),
followed by a grouped rule listing ((y1 τ1 (g11 . . . g1m1)) . . . (yn τn (gn1 . . . gnmn

))) where y1, . . . , yn

are the non-terminal symbols of the grammar. Note that the same variable symbols y1, . . . , yn and
their sorts τ1, . . . , τn appear both in the predeclaration and as heads of each of the rules. If this is not
the case, then this command is not well-formed. For all i, j, recall that grammar term gij is either a
term, or a class of terms denoted by (Constant σc) and (Variable σv) denoting respectively the
set of constants whose sort is σc, and the set of all variables from x1, . . . , xn whose sort is σv. If gij

is an ordinary term, then its free variables may contain y1, . . . , yn, as well as S itself. If the grammar
contains S itself, then it is possible that the definition given for S in a solution is recursive, however,
this feature is disallowed in the default logic (see Section 5).
This command is not well-formed if τ1 (the type of the start symbol) is not σ. It is also not
well-formed if G generates a term t from yi that does not have type τi for some i.
If provided, the grammar G must also be one that is allowed by the output logic of the current
SyGuS logic. For more details on the restrictions imposed on grammars by the logic, see Section 5.
If G does not meet the restrictions of the background logic, it should be rejected.

2By convention quantifiers are always included in the logic. This is because the overall synthesis conjecture specified by
the state may involve universal quantification.
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If no grammar is provided, then any term of the appropriate sort in the output logic may be given in
the body of a solution for S.
More details on grammars and the terms they generate, as well as what denotes a term that meets
the syntactic restrictions of a function-to-synthesize is discussed in detail in Section 6.1.

3.5 Declaring Sorts
In certain logics, it is possible for the user to declare user-defined sorts. For example, declare-datatypes
commands may be given when the theory of datatypes is enabled in the background logic, declare-sort
commands may be given when uninterpreted sorts are enabled in the background logic.

• (declare-datatype S D)

This command is syntax sugar for (declare-datatypes ((S 0)) (D)).

• (declare-datatypes ((S1 a1) . . . (Sn an)) (D1 . . . Dn))

This command adds symbols corresponding to the datatype definitions D1, . . . , Dn for S1, . . . , Sn to
the current signature. For each i = 1, . . . , n, integer constant ai denotes the arity of datatype Si.
The syntax of Di is a constructor listing of the form

((c1 (s11 σ11) . . . (s1m1 σ1m1)) . . . (ck (sk1 σk1) . . . (skmk
σkmk

)))

For each i, the following symbols are added to the signature:

1. Symbol Si is added to the current signature, defined it as a datatype sort whose definition is
given by Di,

2. Symbols c1, . . . , ck are added to the signature, where for each j = 1, . . . , k, symbol cj is defined
as a constructor of sort σj1 × . . . × σjmj

→ Di,
3. For each j = 1, . . . , k, ℓ = 1, . . . mj , symbol sjℓ is added to the signature, defined as a selector

of sort Di → σjℓ.

This command should be rejected if any of the above symbols this command adds to the signature are
already a symbol in the current signature. We provide examples of datatype definitions in Section 9.
For full details on well-formed datatype declarations, refer to Section 4.2.3 of the SMT-LIB 2.6
standard [3].

• (declare-sort S n)

This command adds the symbol S to the current signature and associates it with an uninterpreted
sort of arity n. This command should be rejected if S is already a symbol in the current signature.

3.6 Declaring Weight Keywords
• (declare-weight S A1 . . . An)

This command declares the symbol : S as a weight keyword. The attributes A1 . . . An can be used to
indicate properties of the weight, such as its default value. For details, see Section 8.1.
Terms can be subsequently annotated with this keyword, e.g. (! t : S 1), which are then given a
special semantics as described in Section 5.2.1.

This command is only allowed when the weights feature is enabled.

3.7 Defining Macros
• (define-fun S ((x1 σ1) . . . (xn σn)) σ t)

This command adds to the current signature the symbol S of sort σ if n = 0 or σ1 × . . . σn → σ if
n > 0. The variables x1, . . . , xn may occur freely in t. It defines S as a term whose semantics are
given by the function λx1, . . . , xn. t. Notice that t may not contain any free occurrences of S, that is,
the definition above is not recursive. This command is not well-formed if t is not a well-sorted term
of sort σ. This command should be rejected if S is already a symbol in the current signature.
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• (define-sort S (u1 . . . un) σ)

This command adds the symbol S to the current signature. It defines S as the sort σ. The sort
variables u1, . . . , un may occur free in σ, while S may not occur free in σ. This command is not
well-formed if σ is not a well-formed sort. This command should be rejected if S is already a symbol
in the current signature.

3.8 Asserting Synthesis Constraints and Assumptions
• (constraint t)

This command adds t to the set of constraints. This command is well formed if t is a well-sorted
formula, that is, a well-sorted term of sort Bool. Furthermore, the term t should be allowed based on
the restrictions of the current logic, see Section 5 for more details.

• (assume t)

This command adds t to the set of assumptions. Like constraints, this command is well formed if t is
a well-sorted term of sort Bool. and is allowed based on the restrictions of the current logic.

• (inv-constraint S Spre Strans Spost)

This command adds a set of constraints to the current state that correspond to an invariant
synthesis problem for function-to-synthesize S, where Spre denotes a pre-condition, Spost denotes a
post-condition and Strans denotes a transition relation.
A constraint of this form is well-formed if:

1. S is the function-to-synthesize of sort σ1 × . . . × σn → Bool,
2. Spre is a defined symbol whose definition is of the form λx1, . . . , xn. φpre,
3. Strans is a defined symbol whose definition is of the form λx1, . . . , xn, y1, . . . , yn. φtrans, and
4. Spost is a defined symbol whose definition is of the form λx1, . . . , xn. φpost.

where (x1, . . . , xn) and (y1, . . . , yn) are tuples of variables of sort (σ1, . . . , σn) and φpre, φtrans and
φpost are formulas.
When this command is well-formed, given the above definitions, this command is syntax sugar for:
(declare-var v1 σ1)
(declare-var v′

1 σ1)
. . .
(declare-var vn σn)
(declare-var v′

n σn)
(constraint (=> (Spre v1 . . . vn) (S v1 . . . vn)))
(constraint (=> (and (S v1 . . . vn) (Strans v1 . . . vn v′

1 . . . v′
n)) (S v′

1 . . . v′
n)))

(constraint (=> (S v1 . . . vn) (Spost v1 . . . vn)))

where v1, v′
1, . . . , vn, v′

n are fresh symbols.

• (chc-constraint ((x1 σ1) . . . (xm σm)) tbody thead)

This command adds a universally quantified implication constraint to the current state in the form
of a constrained Horn clause (CHC). Concretely, it adds m fresh variables (v1, . . . , vm) of sorts
(σ1, . . . , σm) respectively to the list of universal variables, and a constraint

((λx1, . . . , xm. tbody) v1 . . . vm) =⇒ ((λx1, . . . , xm. thead) v1 . . . vm)

to the current state. This is a generalization of the inv-constraint command, that allows for
specifying problems with multiple, possibly interdependent, invariant predicates to be synthesized.
A constraint of this form is well-formed if the body of the CHC (i.e., tbody) and the head of the CHC
(i.e., thead) are both well-sorted terms of Bool sort.
When this command is well-formed, given the above definitions, this command is syntax sugar for:
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(declare-var v1 σ1)
. . .
(declare-var vm σm)
(define-fun Fbody ((x1 σ1) . . . (xm σm)) Bool tbody )
(define-fun Fhead ((x1 σ1) . . . (xm σm)) Bool thead)
(constraint (=> (Fbody v1 . . . vm) (Fhead v1 . . . vm)))

where v1, . . . , vm, Fbody, and Fhead are fresh symbols.

3.9 Asserting Oracle Constraints and Assumptions
• (oracle-constraint ((x1 σ1) . . . (xn σn)) ((y1 τ1) . . . (ym τm)) t N)

This command informs the solver of the existance of an external binary with name N which can
be used as means of adding new constraints to the problem. This command is well-formed only
if N implements a function of sort σ1 × . . . × σn → τ1 × . . . × τm (for a definition of the expected
implementation of an external binary, see Section 7), and t is a well-sorted term of sort Bool whose
free symbols may include those in the current signature, as well as any symbol in x1 . . . xn and
y1 . . . ym, and moreover is allowed based on the restrictions of the current logic.
Assuming this command is well-formed, the interaction between the synthesis solver and the binary
can be understood as the solver passing values c1, . . . , cn for x1, . . . xn as input to the binary, and the
binary generating a list of values d1, . . . , dm corresponding to the output y1, . . . ym. The expected
implementation for passing constant values as input and output is described in Section 7. For each
such call, the formula t[c1 . . . cnd1 . . . dm], i.e., t with all occurences of x1, . . . , xn, y1, . . . , ym replaced
with c1, . . . , cn, d1, . . . dm, is added to the current list of constraints φ in the conjecture.
Note that the synthesis solver may choose to call the binary N any time during solving, and as many
times as it chooses. Moreover, the solver may call the binary with the same input more than once.

• (oracle-assume ((x1 σ1) . . . (xn σn)) ((y1 τ1) . . . (ym τm)) t N)

This command is identical to oracle-constraint, but the term t[c1 . . . cnd1 . . . dm] obtained from a
call to the external binary is added to the set of assumptions instead of the set of constraints.

3.10 Declaring Oracle Functional Symbols
• (declare-oracle-fun S (σ1 . . . σn) σ N)

This adds to the current signature a symbol S of function sort σ1 × . . .×σn → σ whose interpretation
is given by an external oracle also with name N . For every call to the oracle, an assumption about
the behavior of S is added to the list of assumptions α in the conjecture. Note that this command is
syntactic sugar for:
(declare-var S (-> σ1 . . . σn σ))
(oracle-assume ((x1 σ1) . . . (xn σn)) ((x σ)) (= (S x1 . . . xn)) N )

where x1, . . . , xn and x are fresh variables.

3.11 Pre-defined Oracle Types
Given a synthesis function symbol F in the current signature with sort σ1, . . . σn → σ, each of the
following commands is used to declare an external oracle with name N , which generate specific types of
oracle constraints and assumptions over the behavior of F .

• (oracle-constraint-io F N)

This command declares an input-output oracle for function F . It is syntactic sugar for:
(oracle-constraint

((x1 σ1) . . . (xn σn))
((x σ))
(= (F x1 . . . xn) x)
N )

11



• (oracle-constraint-poswitness F N)

This command declares a positive witness oracle for synthesis function F . It is syntactic sugar for:
(oracle-constraint

()
((x1 σ1) . . . (xn σn) (x σ))
(= (F x1 . . . xn) x)
N )

• (oracle-constraint-negwitness F N)

This command declares a negative witness oracle for synthesis function F . It is syntactic sugar for:
(oracle-constraint

()
((x1 σ1) . . . (xn σn) (x σ))
(not (= (F x1 . . . xn) x))
N )

• (oracle-constraint-membership F N)

This command declares a membership-query oracle for synthesis function F . It is syntactic sugar for:
(oracle-constraint

((x1 σ1) . . . (xn σn) (x σ))
((R Bool))
(= (= (F x1 . . . xn) x) R)
N )

• (oracle-constraint-cex F N)

This command declares a counter-example oracle for synthesis function F . It is syntactic sugar for:
(oracle-constraint

((Fc (-> σ1 . . . σn σ)))
((R Bool) (x1 σ1) . . . (xn σn))
(=> R (not (= (F x1 . . . xn) (Fc x1 . . . xn))))
N )

where Fc is a candidate implementation for F , and R is a boolean that indicates that the oracle was
able to find a counterexample.

• (declare-correctness-oracle F N)

This command declares a correctness oracle that determines whether a candidate implementation of
F is correct. It is syntactic sugar for:
(declare-oracle-fun s ((-> σ1 . . . σn σ)) Bool N )
(constraint (s F ))

where s is a fresh symbol.

• (declare-correctness-cex-oracle F N)

This command declares a correctness oracle that determines whether a candidate implementation of
F is correct, and returns a counterexample if the implementation is found to be incorrect. It adds a
new constraint to the set of oracle constraints. It is syntactic sugar for:
(oracle-constraint

((Fc (-> σ1 . . . σn σ)))
((R Bool) (x1 σ1) . . . (xn σn))
(=> R (not (= (F x1 . . . xn) (Fc x1 . . . xn))))
N )

(declare-oracle-fun s ((-> σ1 . . . σn σ)) Bool N )
(constraint (s F ))

where s is a fresh symbol.
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3.12 Initiating Synthesis Solver
• (check-synth)

This command asks the synthesis solver to find a solution for the synthesis conjecture corresponding
to the current list of functions-to-synthesize, universal variables and constraints.

• (optimize-synth (s1 . . . sj) A1 . . . Ak)

Like the command above, this asks the synthesis solver to find a solution for the synthesis conjecture
corresponding to the current list of functions-to-synthesize, universal variables and constraints.
Moreover, that solution should be optimal with respect to the objective specified by the list of
terms s1, . . . , sj and attributes A1, . . . , Ak. Objectives can be specified both using annotations on
terms s1, . . . , sj as well as the use of attributes A1, . . . , Ak to specify orderings on tuples. Details on
objectives in given in Section 8.3.
To be well formed, s1, . . . , sj cannot contain any occurrence of universal variables in the current
state, and must be permitted by the background logic.

The expected output from the synthesis solver for these commands is covered in Section 4.

3.13 Setting Benchmark Information
• (set-info : S L)

This command sets meta-information specified by the symbol S to the (literal) value L, whose syntax
is given in Section 2.2. This has no impact on the state, and is used to annotate the benchmark
with relevant information. For the purposes of this document, we define the meaning of the concrete
symbol, sygus-version, which when passed to this command is used to indicate the version of the
SyGuS format used in the benchmark. A benchmark whose header contains the line

(set-info : sygus-version 2.1)

will use the version 2.1 syntax as specified by this document, whereas e.g. a value of 1.0 indicates
that the benchmark will use the syntax in the previous SyGuS format [5, 1, 2].

3.14 Setting Solver Options
• (set-option : S L)

This command sets the solver-specific option specified by the symbol S to the (literal) value L, whose
syntax is given in Section 2.2. We do not give concrete examples of such options in this document.
It is recommended that synthesis solvers ignore unrecognized options, and choose reasonable defaults
when the options are left unspecified.

4 Synthesis Solver Output
This section covers the expected output from a synthesis solver, which currently is limited to responses to
check-synth only.

• A response to check-synth is one of the following:

1. A list of commands, enclosed in parentheses, of the form:

(
( ⟨FunDefCmdKwd⟩ f1 X1 σ1 t1)
. . .
( ⟨FunDefCmdKwd⟩ fn Xn σn tn)
)

where functions f1, . . . , fn are the functions-to-synthesize in the current state, X1, . . . , Xn are
sorted variable lists, σ1, . . . , σn are types, and t1, . . . , tn are terms. The syntax ⟨FunDefCmdKwd⟩
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can be either define-fun or define-fun-rec. The latter must be used for fi if it occurs free
in ti, that is, when the definition of fi is recursive. It is required that f1, . . . , fn be provided in
the order in which they were declared.3 To be a well-formed response, for each j = 1, . . . , n,
it must be the case that tj is a term of σj , and Xj is identical to the sorted variable list used
when introducing the function-to-synthesize fj .

2. The output infeasible, indicating that the conjecture has no solutions.
3. The output fail, indicating that the solver failed to find a solution to the conjecture.

A response to check-synth of the first kind is a correct solution if it satisfies both the semantic and
syntactic restrictions given by the current state. We describe this in more detail in Section 6.
We do not define the correctness of an infeasible response in this document. We remark that a
response of this form should be given by a solver only if it is certain that a solution to the current
conjecture does not exist. A conjecture may be infeasible based on the current semantic restrictions,
or may be infeasible due to a combination of semantic restrictions and the syntactic ones imposed on
functions-to-synthesize. The response fail indicates that the solver was unable to find a solution,
which does not necessarily imply that the conjecture is infeasible.

• A (successful) well-formed response to (optimize-synth (s1 . . . sj) A1 . . . Ak) is a tuple of terms
followed list of commands, enclosed in parentheses, of the form:

(
(c1 . . . cj)
( ⟨FunDefCmdKwd⟩ f1 X1 σ1 t1)
. . .
( ⟨FunDefCmdKwd⟩ fn Xn σn tn)
)

To be a well-formed response, c1, . . . , cj must be values of the same type as s1, . . . , sj , and the
remaining commands must be a well-formed response based on the criteria for check-synth above.
A response of the above form is correct if the specified functions satisfy the syntactic restrictions
given by the current state. Additionally, the solution must satisfy the semantic specification for
optimization queries, which implies that both the semantic specification is satisfied and that the
values c1, . . . , cj are consistent valuations of terms s1, . . . , sj under the current solution for functions
to synthesize f1, . . . , fn. For details, see Section 6.
Additionally, analogous to check-synth, a solver may respond with infeasible or fail to indicate
the conjecture has no solutions, or to indicate a failure.
The role of A1 . . . Ak is to provide an ordering on solutions generated in response to this command,
where a solver is expected to generate a solution that is optimal with respect to this ordering. For
details, see Section 8.3. These attributes do not impact what consistutes a correct solution.

5 SyGuS Background Logics
In this section, we describe how the background logic restricts the constraints and grammars that are
allowed as inputs. A SyGuS background logic consists of three parts:

1. An input logic, which can be set as part of a set-logic command. This corresponds to a SMT-LIB
standard logic or may be solver specific. The input logic determines the set of terms that are allowed
in constraints.

2. An output logic, which can be set as part of a set-logic command. Like input logics, this can
correspond to an SMT-LIB standard logic or may be solver specific. The output logic determines the
set of terms that are allowed in grammars and solutions.

3. A feature set, which restricts or extends the set of commands that are allowed in a SyGuS input, and
may further refine the constraints, grammars and solutions allowed by the logic. Generally, feature
sets are not expressible in an input or output logic and are independent of them.

3This is to ensure that the definition of fi, which may depend on a definition of fj for j < i, is given in the correct order.
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We refer to input and output logics as base logics. Base logics have the same scope as SMT-LIB logics, in
that their purpose is to define a set of terms and formulas. Further extensions and restrictions of the
SyGuS language are recommended to be expressed as new base logics whenever it is possible to do so. On
the other hand, the feature set is allowed to restrict or extend the commands that are allowed in the input
or specific relationships between how terms appear in commands, which is not expressible in a base logic.

The default SyGuS logic is the one whose input and output logics include only the core theory of
Booleans, and whose feature set enables grammars and the core commands of the language. We describe
logics and feature sets in more detail in Sections 5.1 and 5.2. A formal definition of how these restrict the
set of terms that may appear in constraints and grammars is then given in Sections 5.3 and 5.4.

5.1 Input and Output Logics
SMT-LIB provides a catalog of standard logics, available at www.smt-lib.org. SyGuS logics may use
any of these logics either as input logics or as output logics. For many applications, the input and output
logic is expected to be the same, although no relationship between the two is required.

At a high level, a logic includes a set of theories and defines a subset of terms constructible in the
signature of those theories that belong to it. If a logic includes a theory, then its symbols are added to
the current signature when a set-logic command is issued. Further details on the formal definition
of theory and logic declarations can be found in Sections 3.7 and 3.8 of the SMT-LIB 2.6 standard [3].
We briefly review some of the important logics and theories in the following. More concrete details on
standard SMT-LIB logics can be found in the reference grammars in Appendix B.

The input and output logic components of the default SyGuS logic include only the core theory. The
signature of the core theory has the Boolean sort Bool, the Boolean constants true and false, the usual
logical Boolean connectives not, and, or, implication =>, xor, and the parametric symbols = and ite
denoting equality and if-then-else terms for all sorts in the signature. Logics that include the theories
mentioned in this section supplement the signature of the current state with additional sorts and symbols
of that theory.

Arithmetic The theory of integers is enabled in logics like linear integer arithmetic LIA or non-linear
integer arithmetic NIA. The signature of this theory includes the integer sort Int and typical function
symbols of arithmetic, including addition + and multiplication ∗. Unary negation and subtraction are
specified by −. Constants of the theory are integer constants. Positive integers and zero are specified by
the syntax ⟨Numeral⟩ from Section 2.2, whereas negative integers are specified as the unary negation
of positive integer, that is, (− 2) denotes negative two. Analogously, the theory of reals is enabled in
logics like linear real arithmetic LRA or non-linear real arithmetic NRA. Its signature includes the real sort
Real. Some of the function symbols of arithmetic are syntactically identical to those from the theory of
integers, including +, − and ∗. The signature of the theory of reals additionally includes real division /.
Positive reals and zero in this theory can either be specified as decimals using the syntax ⟨Decimal⟩ or
as rationals of the form (/ m n), where m and n are numerals. Negative reals are specified as the unary
negation of a decimal or as a negative rational (/ (− m) n).

Bit-Vectors The theory of fixed-width bit-vectors is included in logics specified by symbols that include
the substring BV. The signature of this theory includes a family of indexed sorts (_ BitVec n) denoting
bit-vectors of width n. The functions in this signature include various operations on bit-vectors, including
bit-wise, arithmetic, and shifting operations.

Strings The theory of (unbounded) Unicode strings and regular expressions is included in some logics
specified with S as a prefix, such as S (strings) or SLIA (strings with linear integer arithmetic). The string
of this theory includes the string sort String, interpreted as the set of all unicode strings. Functions
in this signature include string concatenation str. + +, string length str.len as well as many extended
functions such as string containment str.contains, string search str.indexof which returns the index
of a string in another, and so on. A full description of this theory is given in a proposal to SMT-LIB [7].

Arrays The theory of arrays is included in logics specified with A as a prefix, such as ABV or ALIA. The
signature of this theory includes a parametric sort Array of arity two, whose sort parameters indicate the
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index type and the element type of the array. It has two function symbols, select and store, interpreted
as array select and array store.

Datatypes The theory of datatypes is included in logics specified by symbols that include the substring
DT. Logics that include datatypes are such that declare-datatypes commands are permitted in inputs,
whereas all others do not. The signature of the theory of datatypes is largely determined by the concrete
datatypes definitions provided by the user. As mentioned in Section 3.5, these commands append datatype
sorts, constructors and selectors to the current signature. Constructor symbols are used for constructing
values (e.g. cons constructs a list from an element and another list), and selectors access subfields (e.g.
tail returns its second argument). Notice that the value of wrongly applied selectors, e.g. tail applied
to the nil list, is underspecified and hence freely interpreted in models of this theory. The only fixed
symbol in the theory of datatypes is the unary indexed discriminator predicate (_ is C), which holds if
and only if its argument is an application of constructor C. For example, assuming the standard definition
of a list datatype with constructors cons and nil, we have that ((_ is nil) x) holds if and only if x is
the nil list.

Uninterpreted Functions In SMT-LIB, uninterpreted functions and sorts may be declared in logics
that include the substring UF, whose interpretations are not fixed. Declarations for functions and sorts are
made via SMT-LIB commands declare-fun and declare-sort respectively. In the SyGuS language, we
do not permit the declaration of functions with declare-fun command. Instead, the language includes
only the latter command. Thus, the only effect that specifying UF in the logic string has is that user-defined
sorts may be declared via declare-sort, where variables and functions-to-synthesize may involve these
sorts in the usual way. We remark here that encoding synthesis problems that involve (existentially
quantified) uninterpreted functions can be represented by declaring those functions using synth-fun
commands where no grammar is provided. Synthesis problems that involve universally quantified variables
of function sort are planned to be addressed in a future revision of this document that includes concrete
syntax for function sorts.

5.1.1 Other Theories

Many other theories are possible beyond those supported in the SMT-LIB standard. In this section, we
mention theories that are of interest to synthesis applications that are not included in the SMT-LIB
standard.

Bags and Tables An SMT-LIB compliant theory of tables is proposed in [6]. We give the salient
details of this theory here.

The theory of tables is implemented as an extension of a theory of bags (multisets). The signature of
this theory includes all sorts of the form (Bag T) for all sorts T. This sort denotes bags (i.e. multisets)
of elements of sort T. The theory of bags includes a multitude of operators for e.g. taking unions,
intersections and differences of bags, as well as higher-order operators like map, fold and partition.
A table is a bag whose element sort T is a tuple, where a tuple is a parametric sort taking n types
corresponding to the types of the elements that comprise the tuple. For example, (Tuple Int Int)
denotes tuples of arity two. The sort (Table Int Int) is syntax sugar for (Bag (Tuple Int Int)) and
is used to denote tables with two integer columns. A table value is a multiset union of tuple values.
The number of rows in a table value is equal to its cardinality. Notice that ordering of rows is not
semantically captured, and thus not modelled in this theory. For further details on the complete signature
and semantics of this theory is available in [6].

5.2 Features and Feature Sets
A feature set is a set of values, called features, which for the purposes of this document can be seen as an
enumeration type. Their syntax is given in Section 2.8. The meaning of all features standardized by this
document are listed below.

• grammars: if enabled, then grammars may be provided for functions-to-synthesize in synth-fun
commands.
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• fwd-decls: if enabled, grammars of synth-fun may refer to previously declared synthesis functions,
called forward declarations.

• recursion: if enabled, grammars of synth-fun can generate terms that correspond to recursive
definitions.

• oracles: if enabled, commands from ⟨OracleCmd⟩ are permitted.

• weights: if enabled, terms of the form (_ w f) are permitted, as described below.
Formal definition of these features are given within the Sections 5.3 and 5.4. Other features and their
meanings may be solver specific, which are not covered here.

The feature set component of the default SyGuS logic is the set {grammars}. In other words, grammars
may be provided, but those involving forward declarations and recursion are not permitted by default,
nor are oracles or weight constraints.

5.2.1 Weights

For each function-to-synthesize f and weight keyword W as mentioned in Section 2.5.1, the weight symbol
for f with respect to W is a (nullary) integer symbol ωf,W whose concrete syntax is (_ w f) where w
is the suffix of W after its first character (:). For example, (_ weight f) denotes a symbolic integer
constant corresponding to the weight of f with respect to the builtin weight keyword. We will use
annotations on terms that appear in grammars to denote weighted production rules. The class of nullary
integer symbols of the above form are interpreted as the sum of weights of production rules used for
generating the body of f .

Formally, let G be a grammar provided for function-to-synthesize f , and let W be a weight keyword.
Let y be a non-terminal symbol of G and let t be a term appearing in the grouped rule listing for y, as
described in the syntax for grammar definitions in Section 3.4. We consider the base term of t, defined
such that the base term of unannotated term is itself, and the base term of t is t0 if t is of the form
(! t0 A1 . . . An). Notice that nested annotations on t0 are not considered in this defintion. Assume
that the base term of t is t0 and that t has been annotated with the (possibly empty) list of attributes
A1, . . . , An. In this case, we say that G contains the production rule y 7→ t0 whose weight with respect to
W is: {

k if exactly one Ai is of the form W k for some numeral k

kdef otherwise, where kdef is the default weight value for W

The default weight value for all weight keywords is 0. This value can be overridden via an attribute as
described in Section 8.1.

Let y 7→W,k t0 denote a production rule whose weight with respect to W is k. We write G 7→∗
W,k r if

it is possible to construct a sequence of terms s1, . . . , sn with s1 is the starting symbol of G and sn = r
where for each 1 ≤ i ≤ n, term si is obtained from si−1 by replacing an occurrence of some yi by ti where
yi 7→W,ki

ti is a rule in G, and k1 + . . . kn = k. When the body of function-to-synthesize f is interpreted
as term r, the symbol ωf,W can be interpreted as k if and only if G 7→∗

W,k r.
Notice that there may be multiple sequences of terms that generate the same term r above. Thus,

weight symbols may have multiple valid interpretations for a given interpretation for the body of a
function-to-synthesize. The solver is free to pick any such interpretation.

5.3 SyGuS Logic Restrictions on Constraints
Let L be a SyGuS logic whose input logic is one from the SMT-LIB standard, or an externally defined
logic. A term t is not allowed by L to be an argument to a constraint command if it is not allowed by
the input logic of L, according to the definition of that logic.

5.4 SyGuS Logic Restrictions on Grammars
Let L be a SyGuS logic whose output logic is one from the SMT-LIB standard. A grammar G is not
allowed by L if it generates some term t with no free occurrences of non-terminal symbols that is not
allowed by the output logic of L, according to the definition of that logic.
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Notice that it may be the case that a grammar G contains a rule whose conclusion is a term that
does not itself meet the restrictions of the output logic. For example, consider the logic of linear integer
arithmetic and a grammar G containing a non-terminal symbol yc of integer type such that G generates
only constants from yc. Grammar G may be allowed in the logic of linear integer arithmetic even if it
has a rule whose conclusion is yc ∗ t, noting that no non-linear terms can be generated from this rule,
provided that no non-linear terms can be generated from t. An example demonstrating this case is given
in Section 9.

The feature set component of the SyGuS logic imposes additional restrictions on the terms that are
generated by grammars. Note the following definition. The expanded form of a term t is the (unique) term
obtained by replacing all functions f in t that are defined as macros with their corresponding definition
until a fixed point is reached. A grammar G for function-to-synthesize f is not allowed by a SyGuS
logic L if G contains a rule whose conclusion is a term t whose expanded form contains applications of
functions-to-synthesize unless the feature fwd-decls is enabled in the feature set of L; it is not allowed
if t contains f itself unless the feature recursion is enabled in the feature set of L; it is not allowed
regardless of the terms it generates unless grammars is enabled in the feature set of L.

5.5 Additional SyGuS Logics
Here, we cover additional SyGuS logics that are standardized by this document that are not defined by
the SMT-LIB standard.

Programming-by-examples (PBE) Given an SMT-LIB standard logic X that does not contain
the prefix QF_, the base logic PBE_X denotes the logic where constraints are limited to (conjunctions
of) equalities whose left hand side is a term f(c⃗) and whose right hand side is d, where f is a function
and c⃗, d are constants. We refer to an equality of this form as a PBE equality. Such equalities denote a
relationship between the inputs and output of function f for a single point. Notice that formulas allowed
by logic PBE_X are a subset of those allowed by QF_X.

We use the logic string PBE_X to refer to a SyGuS logic as well. Given an SMT-LIB standard logic
X that does not contain the prefix QF_, the SyGuS logic PBE_X is the one whose input logic is PBE_X,
whose output logic QF_X, and whose feature set is the default one. In other words, the constraints
allowed by this logic are limited to conjunctions of PBE equalities, but gives no special restrictions on
the solutions or grammars that can be provided.

By construction of the overall synthesis conjecture, a SyGuS command sequence meets the requirements
of the input logic PBE_X if and only if each constraint command takes as argument a PBE equality.

Single Invariant-to-Synthesize (Inv) Given an SMT-LIB standard logic X, the base logic Inv_X
denotes the logic where formulas are limited to the invariant synthesis problem for a single invariant-to-
synthesize. Concretely, this means that formulas are limited to those that are (syntactically) a conjunction
of three implications, for a single predicate symbol I to be synthesized:

1. The first is an implication whose antecedent (the pre-condition) is an arbitrary formula in the logic
X and and whose conclusion is an application I(x⃗) where x⃗ is a tuple of unique variables,

2. The second is an implication whose antecedent is I(x⃗) ∧ φ where x⃗ is a tuple of unique variables and
φ (the transition relation) is an arbitrary formula in the logic X, and whose conclusion is I(y⃗) where
y⃗ is a tuple of unique variables disjoint from x⃗,

3. The third is an implication whose antecedent is an application I(x⃗) where x⃗ is a tuple of unique
variables, and whose conclusion (the post-condition) is an arbitrary formula in the logic X.

The variables x⃗ in each of these three formulas are not required to be the same.
Like the previous section, we use the logic string Inv_X to refer to SyGuS logics as well. Given an

SMT-LIB standard logic X that does not contain the prefix QF_, logic Inv_X denotes the SyGuS logic
whose input logic is Inv_QF_X, whose output logic is QF_X, and whose feature set is the default one.

Note that if a SyGuS command sequence is such that it contains (1) exactly one synth-fun command
with Bool return type, (2) exactly one inv-constraint command whose arguments are predicates with
definition within logic X, and (3) no other commands that introduce constraints, then the command
sequence is guaranteed to meet the requirements of the input logic Inv_X.
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Constrained Horn Clause Systems (CHC) Given an SMT-LIB standard logic X, the base logic
CHC_X denotes the logic where formulas are restricted to a valid system of constrained Horn clauses
(CHCs), i.e., the formulas (syntactically) are a conjunction of CHCs over a, possibly empty, set of predicate
symbols to be synthesized. To define a valid system of CHCs, we first define the notion of an atomic term.

Definition 1 (Atomic Term). Given set S of symbols, a term t is said to be an S-atomic term if either:
(a) t does not contain any symbol that belongs to S, or (b) t is of the form (S u1 . . . uk) for some
predicate symbol S ∈ S and u1, . . . , uk are variables.

Given this definition, a set C of CHC constraints over a set S of symbols to be synthesized is considered
a valid system of CHCs for logic CHC_X if C satisfies the following:

1. Each constraint C ∈ C satisfies the following:

(a) C must be an implication of the form BC(x⃗) =⇒ HC(x⃗), where BC (called the body of C) and
HC (called the head of C) are defined predicates, and x⃗ is a tuple of unique variables.

(b) The definition of HC must be an S-atomic term.
(c) The definition of BC must either be an S-atomic term, or a conjunction of S-atomic terms.

Henceforth, we will call such a constraint an S-valid CHC, or simply a valid CHC when the set S is
obvious from the context.

2. Exactly one query, i.e., a constraint C ∈ C with HC defined as false.
The variables x⃗ in each of the constraints are not required to be the same.

As in the previous section, we use the logic string CHC_X to refer to SyGuS logics as well. Given an
SMT-LIB standard logic X that does not contain the prefix QF_, logic CHC_X denotes the SyGuS logic
whose input logic is CHC_QF_X, whose output logic is QF_X, and whose feature set is the default one.

A well-sorted SyGuS command sequence meets the requirements of the input logic CHC_X if it contains
1. synth-fun commands with Bool return type only, that declare a set S of predicates to be synthesized,

2. one or more chc-constraint command each of which is such that

(a) its thead is an S-atomic predicate with definition within logic X,
(b) its tbody is either an S-atomic predicate, or a conjunction of S-atomic predicates, each with

definitions within logic X,

3. exactly one chc-constraint command with false as thead, and

4. no other commands that introduce constraints.

6 Formal Semantics
Here we give the formal semantics for what constitutes a correct solution for a synthesis conjecture.

6.1 Satisfying Syntactic Specifications
In this section, we formalize the notion of satisfying the syntactic specification of the synthesis conjecture.

As described in Section 3.4, a grammar G is specified as a predeclaration and a grouped rule listing of
the form

((y1 τ1 (g11 . . . g1m1)) . . . (yn τn (gn1 . . . gnmn
)))

where y1, . . . , yn are variables and g11 . . . g1m1 , . . . , gn1 . . . gnmn are grammar terms. We associate each
grammar with a sorted variable list X, namely the argument list of the function-to-synthesize. We refer
to y1 as the start symbol of G.

We interpret G as a (possibly infinite) set of rules of the form y 7→ t where t is an (ordinary) term
based on the following definition. For each yi, gik in the grouped rule list, if gik is (Constant σc), then
G contains the rule yi 7→ c for all constants of sort σc. If gik is (Variable σv), then G contains the rule
yi 7→ x for all variables x ∈ X of sort σv. Otherwise, if gik is an ordinary term, then G contains the rule
yi 7→ gik.
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We say that G generates term r from s if it is possible to construct a sequence of terms s1, . . . , sn with
s1 = s and sn = r where for each 1 ≤ i ≤ n, term si is obtained from si−1 by replacing an occurrence of
some y by t where y 7→ t is a rule in G.

Let f be a function to synthesize. A term λX. t satisfies the syntactic specification for f if one of the
following hold:

1. A grammar G is provided for f , t contains no free occurrences of non-terminal symbols, and G
generates t starting from y1, where y1 is the start symbol of G.

2. No grammar is provided for f , and t is any term allowed in the output logic whose sort is the same
as the return sort of f .

Furthermore, A tuple of functions (λX1. t1, . . . , λXn. tn) satisfies the syntactic restrictions for functions-
to-synthesize (f1, . . . , fn) in conjecture ∃f1, . . . , fn. Ψ if λXi. ti satisfies the syntactic specification for fi

for each i = 1, . . . , n.

6.2 Satisfying Semantic Specifications
In this section, we formalize the notion of satisfying the semantic specification of the synthesis conjecture
for background theories T from the SMT-LIB standard. The notion of satisfying semantic restrictions
for background theories that are not standardized in the SMT-LIB standard are not covered by this
document.

Before stating the formal definition for satisfying semantic specifications, we require the follow-
ing definitions. Consider a synthesis conjecture ∃f1, . . . , fn. Ψ in background theory T , and let α =
(λX1. t1, . . . , λXn. tn) be an assignment for functions-to-synthesize (f1, . . . , fn) whose grammars are
G1, . . . , Gn. Let Ψα be the formula:

n∧
i=1

∀Xi. f(Xi) ≈ ti

In other words, Ψα contains quantified formulas that constrain the behavior of the functions to the
synthesize based on their definition in α. To reason about weight symbols in the definition below, we say
that substitution σ is consistent with α if it is of the form:

{ωfi,W 7→ k | Gi 7→∗
W,k ti}

In other words, σ is consistent with α if it replaces weight symbols for functions to synthesize fi with
only valid interpretations based on their bodies ti in α.

We now state the formal definition for satisfying semantic specifications based on the above definitions.
We say that α satisfies the semantic restrictions for conjecture ∃f1, . . . , fn. Ψ if (Ψα ∧ Ψ) · σ is T -valid
formula for some substitution σ that is consistent with α. The formal definition for T -valid here
corresponds to the definition given by SMT-LIB, for details see Section 5 of [3]. This definition covers
cases where f1, . . . , fn have recursive definitions or references to forward declarations, which is why their
definitions are explicitly given in the definition of Ψα.

6.2.1 Satisfying Semantic Specifications for Optimization Queries

We extend the notion of semantic correctness to responses to optimization queries of the form:

(optimize-synth (s1 . . . sj) A1 . . . Ak)

Recall from Section 4 that a successful response to this command contains:
1. A tuple of terms (c1, . . . , cj) corresponding to the valuation of terms (s1, . . . , sj), and

2. A tuple of functions (λX1. t1, . . . , λXn. tn) corresponding to a solution for functions-to-synthesize
f1, . . . , fn.

Let ∃f1, . . . , fn. Ψ be the synthesis conjecture for the current state, and let Ψo be the formula:

j∧
i=1

sj ≈ cj
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A solution of the above form for an optimization query satisfies semantic specifications if only if
(λX1. t1, . . . , λXn. tn) satisfies the semantic specifications for the synthesis conjecture ∃f1, . . . , fn.Ψ ∧ Ψo.

Notice that the attributes A1, . . . , Ak specify an ordering on the solution, but do not impact its
correctness.

7 Calling Oracles
In the following, we formalize the interface between the synthesis solver and an external binary, which we
call an oracle. An oracle can be queried either via command line or using text files. If the oracle must be
queried via text files, it is declared with the attribute :file. If the oracle must be queried via command
line, it is declared with the attribute :command-line. The expected interface for an oracle queried via
command line is given by the following definition. In absence of either attribute, the default assumption
is that the oracle must be queried via command line.

The expected interface for an oracle queried via command line and text files are given by the following
definitions:

Definition 2. An oracle queried via command line implements an interface with input (σ1 × . . . × σn)
and output (τ1 × . . . × τm) if it has the following behavior. Let the following be a string

v1 . . . vn

where v1, . . . , vn are values4 of sorts σ1, . . . , σn written using the syntax for values described in this
document. Let oracle be the name of the binary corresponding to the oracle. When an oracle that is
queried by command line is executed with the command oracle (v1 . . . vn), it returns the text on the
standard output channel

(w1 . . . wm)

where w1, . . . , wn are values of sorts τ1, . . . , τm written using the syntax for values described in this
document.

Definition 3. An oracle queried via text files implements an interface with input (σ1 × . . . × σn) and
output (τ1 × . . . × τm) if it has the following behavior. Let textfile.query be a file containing the text

(v1 . . . vn)

where v1, . . . , vn are values5 of sorts σ1, . . . , σn written using the syntax for values described in this
document. Let oracle be the name of the binary corresponding to the oracle. When the oracle is
executed with the command oracle textfile.query, it returns the text on the standard output channel

(w1 . . . wm)

where w1, . . . , wn are values of sorts τ1, . . . , τm written using the syntax for values described in this
document.

In other words, in both cases, the synthesis solver and the external binary communicate with one
another using a text interface, where the input text contains a tuple of values corresponding to input to
the binary, and the output from the binary is a tuple of terms indicating the output of the binary, which
is printed on the standard output channel. It is expected that the synthesis solver parses these values to
ascertain the result of the query.

It is important to note that the text file or command string is expected to be a tuple of values only.
In some cases, the syntax for those values may involve symbols that are user-defined. As an example,
consider an oracle implementing an interface whose input takes a user-defined datatype. The definition of
that datatype is not provided as a preamble to the given tuple of values. This means that an external
binary is responsible for parsing the given text file, even when it uses symbols whose definitions are not

4A value of type T coincides with a term generated by the SyGuS grammar term (Constant T ). For example, the values
of type Int have syntax N or (−N) where N is a numeral. The values for function types include all closed lambda terms.

5A value of type T coincides with a term generated by the SyGuS grammar term (Constant T ). For example, the values
of type Int have syntax N or (−N) where N is a numeral. The values for function types include all closed lambda terms.
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self-contained in that text file/command string. It is assumed that the user has ensured the syncronization
of the oracle specification and the input format accepted by the binary.

It is the responsibility of the user to specify oracles in SyGuS commands that implement interfaces of
the appropriate sorts. If this is not the case, the synthesis solver may choose to ignore the output of the
oracle or terminate with an error.

For example, consider an oracle that implements the interface declared with the following command:

(oracle-constraint ((x1 σ1) . . . (xn σn)) ((y1 τ1) . . . (ym τm)) t N : file)

The text file must contain a list of values (v1 . . . vn) for the input parameters x1 . . . xn, and vi must
have the same sort as σi. The oracle will return a list of values (w1 . . . wm), corresponding to the output
parameters y1 . . . ym, and wi must have the same sort as τi. The solver calls the oracle with the command
N textfile.query, where N is the name of the oracle implememtation as specified in the oracle constraint
declaration.

8 Attributes
In this section, we standardize attributes that are specific to the features introduced in this document.

8.1 Weights
1. The attribute :default expects an integer attribute value n. It specifies that the default weight

value of declared weight keyword is n.
Recall from Section 5.2.1 that the default value for weight keywords is 0. On the other hand, the
command:
( declare-weight numOps :default 1)

declares a weight keyword numOps whose default weight value is 1.

8.2 Oracle communication
1. The attribute :file specifies that an oracle should be queried via text files, as described in Section 7.
2. The attribute :command-line specifies that an oracle should be queried via command line, as

described in Section 7.
For example, the following oracle function declaration specifies that the oracle should be queried via

text files:
( declare-oracle-fun (Int) Int binaryname :file)

8.3 Objectives
In this section, we standardize attributes that pertain to specifying objectives of the optimize-synth
command. We classify two kinds of attributes. The first pertain to the orderings on values, which are
supplied in the first argument of optimize-synth command. The second pertain to orderings on the
tuple itself. Below, we use ≻ to denote orderings on values or tuples of values, such that when e1 ≻ e2,
we have that e1 is a more preferred solution.

Value Orderings
1. The attribute :max specifies that the ordering on values ≻ for a given term t should be maximized

according to the default ordering of the type of t. The specification is well-defined only if the type of
t has a default ordering. We assume the default ordering > is used for reals and integers, such that
v1 ≻ v2 if v1 > v2. Orderings on other types are not standardized by this document. Note that this
attribute expects no provided attribute value.

2. The attribute :min is dual to :max, such that that ordering ≻ should minimize the value based on
the default ordering of its type. Like :max, this attribute expects no provided attribute value.
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Tuple Orderings
1. The attribute :lexico specifies that the ordering on tuples is lexicographic. In particular, assuming

orderings ≻1, . . . , ≻n on the components of n-tuples, (c1, . . . , cn) ≻ (d1, . . . , dn) holds if there exists
a 0 ≤ j ≤ n such that ci = di for i < j and cj ≻j dj . This attribute expects no provided attribute
value.

For example, consider the command:
( optimize-synth ((! x :min) (! y :max)) :lexico )

This indicates that the objective is to first minimize x, and then maximize y. Hence, in this example,
solutions in response to this command are ordered such that (0, 3) ≻ (1, 3) ≻ (1, 0).

9 Examples
Example 1 (Linear Arithmetic with Constant Coefficients). Consider the following example:

1 ( set-logic LIA)
2 ( synth-fun f ((x Int) (y Int)) Int
3 ((I Int) (Ic Int))
4 ((I Int (0 1 x y
5 (+ I I)
6 (* Ic I)))
7 (Ic Int (0 1 2 (- 1) (- 2)))))
8 ( declare-var x Int)
9 ( declare-var y Int)

10 ( constraint (= (f x y) (* 2 (+ x y))))
11 ( check-synth )

In this example, the logic is set to linear integer arithmetic. The grammar of the function-to-synthesize f
has two non-terminals, I and Ic. What is notable in this example is that the grammar for f includes
a rule for I whose right hand side is the term (∗ Ic I). If a term of this form were to appear in a
constraint, then it would not be allowed since it is the multiplication of two non-constant terms and
thus is not allowed by the input logic LIA. However, by the definition of our restrictions on grammars in
Section 5.4, this grammar is allowed, since all closed terms that the grammar generates are allowed by
linear arithmetic. A possible correct response for this example from a synthesis solver is:

1 (
2 ( define-fun f ((x Int) (y Int)) Int (+ (* 2 x) (* 2 y)))
3 )

Example 2 (Datatypes with Linear Arithmetic). Consider the following example:
1 ( set-logic DTLIA)
2 ( declare-datatype List
3 (( nil)
4 (cons (head Int) (tail List))))
5 ( synth-fun f ((x List)) Int
6 ((I Int) (L List) (B Bool))
7 ((I Int (0 1
8 (head L)
9 (+ I I)

10 (ite B I I)))
11 (L List (nil
12 x
13 (cons I L)
14 (tail L)))
15 (B Bool (((_ is nil) L)
16 ((_ is cons) L)
17 (= I I)
18 (>= I I)))))
19 ( constraint (= (f (cons 4 nil)) 5))

23



20 ( constraint (= (f (cons 0 nil)) 1))
21 ( constraint (= (f nil) 0))
22 ( check-synth )

In this example, the logic is set to datatypes with linear integer arithmetic DTLIA. A datatype List is
then declared, which encodes lists of integers with two constructors nil and cons. The input contains a
single-function to synthesize f that takes as input a list and returns an integer. Its grammar contains
non-terminal symbols for integers, lists and Booleans, and includes applications of constructors nil
and cons, selectors head and tail, and discriminators (_ is nil) and (_ is cons). A possible correct
response for this example from a synthesis solver is:

1 (
2 ( define-fun f ((x List)) Int (ite ((_ is nil) x) 0 (+ 1 (head x))))
3 )

In other words, a possible solution for f returns zero whenever its argument is the empty list nil, and
returns one plus the head of its argument otherwise.

Example 3 (Bit-Vectors with Concatenation and Extraction). Consider the following example:
1 ( set-logic BV)
2 ( synth-fun f ((x (_ BitVec 32))) (_ BitVec 32)
3 (( BV32 (_ BitVec 32)) (BV16 (_ BitVec 16)))
4 (( BV32 (_ BitVec 32) (# x00000000 # x00000001 # xFFFFFFFF
5 x
6 (bvand BV32 BV32)
7 (bvor BV32 BV32)
8 (bvnot BV32)
9 ( concat BV16 BV16)

10 ))
11 (BV16 (_ BitVec 16) (# x0000 #x0001 #xFFFF
12 (bvand BV16 BV16)
13 (bvor BV16 BV16)
14 (bvnot BV16)
15 ((_ extract 31 16) BV32)
16 ((_ extract 15 0) BV32)))))
17 ( constraint (= (f # x0782ECAD ) # xECAD0000 ))
18 ( constraint (= (f # xFFFF008E ) # x008E0000 ))
19 ( constraint (= (f # x00000000 ) # x00000000 ))
20 ( check-synth )

The this example, the logic is set to bit-vectors BV. A single function-to-synthesize f is given that takes a
bit-vector of bit-width 32 as input and returns a bit-vector of the same width as output. Its grammar
involves non-terminals whose sorts are bit-vectors of bit-width 32 and 16. The semantics of the operators
in this example are defined in the SMT-LIB standard. In particular, the operator concat concatenates its
two arguments, and the indexed operator (_ extract n m) returns a bit-vector containing bits n through
m of its argument, where n ≥ m. A possible correct response for this example from a synthesis solver is:

1 (
2 ( define-fun f ((x (_ BitVec 32))) (_ BitVec 32)
3 ( concat ((_ extract 15 0) x) #x0000))
4 )

In other words, a possible solution for f returns the concatenation of bits 15 to 0 of its argument with
the bit-vector #x0000.

Example 4 (Grammars with Defined Symbols, Forward Declarations and Recursion). Consider the
following example:

1 ( set-logic LIA)
2 ( set-feature :fwd-decls true)
3 ( set-feature :recursion true)
4 ( define-fun x_plus_one ((x Int)) Int (+ x 1))
5 ( synth-fun f ((x Int)) Int
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6 ((I Int))
7 ((I Int (0 1 x ( x_plus_one I)))))
8 ( define-fun fx_plus_one ((x Int)) Int (+ (f x) 1))
9 ( synth-fun g ((x Int)) Int

10 ((I Int))
11 ((I Int (0 1 x ( fx_plus_one I)))))
12 ( synth-fun h ((x Int)) Int
13 ((I Int) (B Bool))
14 ((I Int (0 1 x (- I 1) (+ I I) (h I) (ite B I I)))
15 (B Bool ((= I I) (> I I)))))
16 ( declare-var y Int)
17 ( constraint (= (h y) (- (g y) (f y))))
18 ( check-synth )

This example contains three well-formed synth-fun commands. The first one for function f contains
an application of a macro x_plus_one, which abbreviates adding one to its argument. This grammar
is allowed in the default SyGuS logic and in this example. The grammar for g contains an application
of a macro fx_plus_one, whose expanded form contains a previously declared function-to-synthesize
f . This grammar is allowed since the feature fwd-decls is enabled in this example. The grammar for
h contains a rule that contains an application of h itself. This grammar is allowed since recursion is
enabled in this example. A possible correct response for this example from a synthesis solver is:

1 (
2 ( define-fun f ((x Int)) Int x)
3 ( define-fun g ((x Int)) Int ( fx_plus_one x))
4 ( define-fun h ((x Int)) Int 1)
5 )

Notice the above definitions for f , g, and h are given in the order in which they were introduced via
synth-fun commands in the input.

Example 5 (Programming by Examples (PBE) with Strings). Consider the following example:
1 ( set-logic PBE_SLIA )
2 ( synth-fun f (( fname String ) (lname String )) String
3 (( y_str String ) (y_int Int))
4 (( y_str String (" " fname lname
5 (str.++ y_str y_str)
6 (str. replace y_str y_str y_str)
7 (str.at y_str y_int)
8 (str. from_int y_int)
9 (str. substr y_str y_int y_int)))

10 (y_int Int (0 1 2
11 (+ y_int y_int)
12 (- y_int y_int)
13 (str.len y_str)
14 (str. to_int y_str)
15 (str. indexof y_str y_str y_int)))))
16 ( constraint (= (f "Nancy" " FreeHafer ") "Nancy FreeHafer "))
17 ( constraint (= (f " Andrew " " Cencici ") " Andrew Cencici "))
18 ( constraint (= (f "Jan" "Kotas") "Jan Kotas"))
19 ( constraint (= (f " Mariya " " Sergienko ") " Mariya Sergienko "))
20 ( check-synth )

In this example, the logic is set to the SyGuS-specific logic PBE_SLIA, indicating strings with linear
integer arithmetic where constraints are limited to a conjunction of PBE equalities. In this example, four
constraints are given, each of which meet the restriction of being a PBE equality. A possible correct
response for this example from a synthesis solver is:

1 (
2 ( define-fun f (( fname String ) (lname String )) String
3 (str.++ fname (str.++ " " lname)))
4 )
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Example 6 (Weights). Consider the following example:
1 ( set-logic NIA)
2 ( set-feature :weights true)
3 ( declare-weight numX)
4 ( synth-fun f ((x Int)) Int
5 ((I Int))
6 ((I Int (0 1
7 (! x :numX 1)
8 (+ I I)
9 (! (* x x) :numX 2)))))

10 ( constraint (= (_ numX f) 3))
11 ( check-synth )

In this example, a weight keyword numX has been declared. A function-to-synthesize f has been declared,
whose production rules include annotations. These annotations count the number occurrences of x, where
recall that the default value for unannotated terms with respect to the given weight is 0. A constraint is
given that states that the weight of f with respect to the weight keyword numX must be 3. A possible
correct response for this example from a synthesis solver is:

1 (
2 ( define-fun f ((x Int)) Int (+ x (* x x)))
3 )

Example 7 (Weight with Multiple Interpretations). Consider the following example:
1 ( set-logic LIA)
2 ( set-feature :weights true)
3 ( declare-weight numI)
4 ( synth-fun f ((x Int)) Int
5 ((I Int))
6 ((I Int (0 1 x
7 (+ x 1)
8 (! (- I) :numI 1)
9 (! (+ I I) :numI 2)))))

10 ( define-fun numRulesForF () Int (+ (_ numI f) 1))
11 ( declare-var x Int)
12 ( constraint (and (> (f x) x) (< numRulesForF 3)))
13 ( check-synth )

In this example, a weight keyword numI has been declared, which counts the number of occurrences of
the non-terminal I that were used in applications of the production rules that generated the body of f .
The function numRulesForF is defined to be the weight of f with respect to this keyword plus one, or in
other words, the number of rules used for generating the body of f . A possible correct response for this
example from a synthesis solver is:

1 (
2 ( define-fun f ((x Int)) Int (+ x 1))
3 )

In this example, the body (+ x 1) given for f can be generated in multiple ways from the given grammar.
In particular, it could be generated directly from the start symbol, or e.g. via the sequence I, (+ I I), (+
x I), (+ x 1). Thus, when the body of f is interpreted as (+ x 1), the interpretation of (+ (_ numI
f) 1) may either be 1 or 3. The constraint (< numRulesForF 3) is satisfied in the former interpretation,
and hence the solution for f satisfies all input constraints.

Example 8 (Optimization with Weights). Consider the following example:
1 ( set-logic LIA)
2 ( set-feature :weights true)
3 ( declare-weight branches )
4 ( synth-fun f ((x Int)) Int
5 ((I Int) (B Bool))
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6 ((I Int (0 1 x (+ I I) (! (ite B I I) :branches 1)))
7 (B Bool ((>= I I) (= I I)))))
8 ( declare-var x Int)
9 ( constraint (= (f x) (ite (= x 0) 0 x)))

10 ( optimize-synth ((! (_ branches f) :min)))

In this example, a weight keyword branches has been declared. The grammar of function f has been
annotated such that branches corresponds to the number of ite terms in its body. An optimization
query is made, where the objective is to minimize the number of branches in f. This is specified by a
term annotation on (_ branches f). A possible correct response for this example is:

1 (
2 (1)
3 ( define-fun f ((x Int)) Int (ite (= x 0) 0 x))
4 )

Another possible response for this example is:
1 (
2 (0)
3 ( define-fun f ((x Int)) Int x)
4 )

In both cases, the value of term (_ branches f) was given in the solution that was consistent with the
number of ite terms in the body of f. Hence, both responses are correct. The latter solution gives a
smaller value for this term, and hence it is preferred based on the specified objective.

Notice that in this example, no attribute is provided for the optimize-synth command, meaning
that no ordering is specified on the tuple passes as argument to this command. For details on the default
semantics for objectives, see Section 8.3. In the next example, we show how ordering on tuples can be
specified.

Example 9 (Lexicographic Optimization). Consider the following example:
1 ( set-logic LIA)
2 ( synth-fun f ((x Int)) Int
3 ((I Int) (B Bool))
4 ((I Int (0 1 x (+ I I) (ite B I I)))))
5 ( declare-var x Int)
6 ( constraint (or (= (f x) 1) (= (f x) x)))
7 ( optimize-synth ((! (f 0) :max) (! (f 100) :max)) :lexico )

This example also contains an optimization query. The objective of the query is to optimize the values of
terms (f 0) and (f 100). Moreover, the ordering on tuples of these terms is lexicographic with respect
to the orderings specified for each term position. In particular, this means that the best solution for this
example is one that first maximizes (f 0) and then maximizes (f 100). A possible correct response for
this example is:

1 (
2 (1 1)
3 ( define-fun f ((x Int)) Int 1)
4 )

Another possible response for this example is:
1 (
2 (0 100)
3 ( define-fun f ((x Int)) Int x)
4 )

The first example is preferred, since the first value in the first solution is greater than the first value in
the second, since the command specified that solutions are ordered lexicographically.

Example 10 (Single Invariant Synthesis (Inv) over Linear Integer Arithmetic). Consider the following
imperative program in a C-like language:
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1 int x, y;
2 assume (5 <= x && x <= 9);
3 assume (1 <= y && y <= 3);
4 while (*) {
5 x += 2;
6 y += 1;
7 }
8 assert (y < x);

The problem of synthesizing an invariant to verify this program, can be expressed in SyGuS as follows:
1 ( set-logic Inv_LIA )
2 ( synth-fun inv-f ((x Int) (y Int)) Bool)
3 ( define-fun pre-f ((x Int) (y Int)) Bool
4 (and (<= 5 x) (<= x 9) (<= 1 y) (<= y 3)))
5 ( define-fun trans-f ((x Int) (y Int) (xp Int) (yp Int)) Bool
6 (and (= xp (+ x 2)) (= yp (+ y 1))))
7 ( define-fun post-f ((x Int) (y Int)) Bool (< y x))
8 ( inv-constraint inv-f pre-f trans-f post-f )
9 ( check-synth )

In this example, the logic is set to the SyGuS-specific logic Inv_LIA, indicating linear integer arithmetic
where constraints are limited to the invariant synthesis problem for a single invariant-to-synthesize. Since
this example contains only linear integer arithmetic terms, a single predicate-to-synthesize inv-f, and
only introduces constraints via a single inv-constraint command, it meets the restrictions of the logic.
A possible correct response for this example from a synthesis solver is:

1 (
2 ( define-fun inv-f ((x Int) (y Int)) Bool (> x y))
3 )

Example 11 (CHCs over Linear Integer Arithmetic with a Single Predicate to Synthesize). The
verification problem from the previous example can also be expressed as a system of CHCs, which can be
encoded in SyGuS as follows:

1 ( set-logic CHC_LIA )
2 ( synth-fun inv-f ((x Int) (y Int)) Bool)
3 ( chc-constraint ((x Int) (y Int))
4 (and (<= 5 x) (<= x 9) (<= 1 y) (<= y 3))
5 (inv-f x y))
6 ( chc-constraint ((x Int) (y Int) (xp Int) (yp Int))
7 (and (inv-f x y) (= xp (+ x 2)) (= yp (+ y 1)))
8 (inv-f xp yp))
9 ( chc-constraint ((x Int) (y Int))

10 (and (inv-f x y) (not (< y x)))
11 false)
12 ( check-synth )

In this example, the logic is set to the SyGuS-specific logic CHC_LIA, indicating linear integer arithmetic
where constraints are limited to constrained Horn clauses. Since this example contains only linear integer
arithmetic terms, only predicate symbols to be synthesized (i.e., inv-f, only introduces valid CHCs via
chc-constraint command, and only a single CHC query, it meets the restrictions of the logic. As for
the previous example, a possible correct response for this example from a synthesis solver is:

1 (
2 ( define-fun inv-f ((x Int) (y Int)) Bool (> x y))
3 )

Example 12 (CHCs over Linear Integer Arithmetic with Multiple Predicates to Synthesize). Consider
the following imperative program in a C-like language:

1 int x;
2 int y = x, n = 0;
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3 while (*) {
4 x += 1;
5 n += 1;
6 }
7 x *= 2;
8 while (n != 0) {
9 x -= 2;

10 n -= 1;
11 }
12 assert (x == 2 * y);

The verification problem for this program is more naturally expressed as a system of CHCs using the CHC
logic in SyGuS instead of the Inv logic:

1 ( set-logic CHC_LIA )
2 ( synth-fun inv1 ((x Int) (y Int) (n Int)) Bool)
3 ( synth-fun inv2 ((x Int) (y Int) (n Int)) Bool)
4 ( chc-constraint ((x Int) (y Int) (n Int))
5 (and (= y x) (= n 0))
6 (inv1 x y n))
7 ( chc-constraint ((x Int) (y Int) (n Int) (xp Int) (np Int))
8 (and (inv1 x y n) (= xp (+ x 1)) (= np (+ n 1)))
9 (inv1 xp y np))

10 ( chc-constraint ((x Int) (y Int) (n Int) (xp Int))
11 (and (inv1 x y n) (= xp (* 2 x)))
12 (inv2 xp y n))
13 ( chc-constraint ((x Int) (y Int) (n Int) (xp Int) (np Int))
14 (and (inv2 x y n) (not (= n 0)) (= xp (- x 2)) (= np (- n 1)))
15 (inv2 xp y np))
16 ( chc-constraint ((x Int) (y Int) (n Int))
17 (and (= n 0) (inv2 x y n) (not (= x (* 2 y))))
18 false)
19 ( check-synth )

In this example, the logic is set to the SyGuS-specific logic CHC_LIA, indicating linear integer arithmetic
where constraints are limited to constrained Horn clauses. Since this example contains only linear integer
arithmetic terms, only predicate symbols to be synthesized (i.e., inv1 and inv2), only introduces valid
CHCs via chc-constraint command, and only a single CHC query, it meets the restrictions of the logic.
A possible correct response for this example from a synthesis solver is:

1 (
2 ( define-fun inv1 ((x Int) (y Int) (n Int)) Bool (= x (+ y n)))
3 ( define-fun inv2 ((x Int) (y Int) (n Int)) Bool (= x (* 2 (+ y n))))
4 )

Example 13 (PBE with Oracle Function Symbols). Oracle function symbols are used to represent
black-box functions within specifications. Consider a PBE problem where the user has an external oracle
and wishes to synthesize a summary of the external oracle for a specific set of inputs. This can be
encoded using an oracle function symbol (note this is syntactic sugar for an oracle assumption and an
uninterpreted function):

1 ( set-logic BV)
2 ( set-feature :oracles true)
3 ( synth-fun f ((x (_ BitVec 64))) (_ BitVec 64))
4 ( declare-oracle-fun target ((_ BitVec 64)) (_ BitVec 64) binaryname )
5 ( constraint (= (f # x28085a970e13e12c ) ( target # x28085a970e13e12d )))
6 ( constraint (= (f # xbe5341bebd2a0749 ) ( target # xbe5341bebd2a0749 )))
7 ( constraint (= (f # xe239460eed2cc34e ) ( target # xe239460eed2cc34f )))
8 ( constraint (= (f # xac5b1b5e9b236b10 ) ( target # xac5b1b5e9b236b11 )))
9 ( constraint (= (f # x4069a4c7173e1786 ) ( target # x4069a4c7173e1786 )))

10 ( constraint (= (f # x39419062091119a6 ) ( target # x39419062091119a6 )))
11 ( constraint (= (f # x49aeeca628644ee0 ) ( target # x49aeeca628644ee0 )))
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12 ( constraint (= (f # x75e5bc2a07c77c97 ) ( target # x75e5bc2a07c77c97 )))
13 ( constraint (= (f # x4c5ee4be98c5ee7d ) ( target # x4c5ee4be98c5ee7d )))
14 ( constraint (= (f # xcd67bd5beaac575e ) ( target # xcd67bd5beaac575e )))
15 ( check-synth )

In this way, a PBE problem can be encoded without the user knowing the correct behavior of the target
function explicitly. Instead, the target function is implemented by the oracle binaryname, and the solver
can call binaryname with an input given in a constraint and binaryname returns the result of applying
target to the input.

Example 14 (Synthesis with Oracle Assumptions). In addition to their use in oracle function symbols,
oracle assumptions can be used to relax a synthesis specification in other ways. Consider the following
synthesis problem. The oracle, when called, generates an assumption that relaxes the values of x that
the specification must hold for, i.e., when x < z the specification need not hold. This could be used,
for example, in invariant synthesis if an oracle can determine that certain parts of the state-space are
unreachable from the initial states and backward unreachable from the violation of the post-condition.
This could be particularly useful if the specified transition relation is over-approximate.

1 ( set-logic LIA)
2 ( set-feature :oracles true)
3 ( synth-fun inv-f ((x Int)) Bool)
4 ( declare-var x Int)
5 ( declare-var x! Int)
6 ( define-fun pre-f ((x Int)) Bool (= (mod x 2) 0))
7 ( define-fun trans-f ((x Int)(x! Int)) Bool (or (= x! x) (= x! (* x (x-1)))))
8 ( define-fun post-f ((x Int)) Bool (= (mod x 4) 0)
9 ( constraint (=> (pre-f x) (inv-f x)))

10 ( constraint (=> (and (inv-f x) ( trans-f x x!)) (inv-f x!)))
11 ( constraint (=> (inv-f x) ( post-f x)))
12 ( oracle-assume (( inv-candidate (-> Int Bool))) ((z Int)) binaryname
13 (>= x z))
14 ( check-synth )

Example 15 (Synthesis with Oracle Constraints and Oracle Function Symbols). As well as PBE style
problems, oracle function symbols can be used to incorporate other verification engines via correctness
oracles. Here, an oracle function symbol must return “true” before the synthesised function is valid.
However, a black-box correctness oracle along does not provide much information to the synthesiser. This
oracle can be supplemented with an oracle constraint. Here the oracle constraint provides a fresh positive
witness whenever it is called, constraining the space of possible candidate functions.

1 ( set-logic LIA)
2 ( set-feature :oracles true)
3 ( synth-fun f ((x Int)) Bool)
4 ( declare-oracle-fun isCorrect ((-> Int Bool)) Bool binaryname )
5 ( constraint ( isCorrect f))
6 ( oracle-constraint () ((x Int)) ((z Bool)) binaryname2
7 (=> (f x) z))
8 ( check-synth )
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A Reserved Words
A reserved word is any of the literals from Section 2.2, or any of the following keywords:
!, _, check-synth, Constant, chc-constraint, constraint, declare-correctness-cex-oracle, declare-correctness-oracle,
declare-datatype, declare-datatypes, declare-oracle-fun, declare-sort, declare-var, declare-weight,
define-fun, define-sort, exists, forall, inv-constraint, let, optimize-synth, oracle-assume,
oracle-constraint, oracle-constraint-cex, oracle-constraint-io, oracle-constraint-membership,
oracle-constraint-negwitness, oracle-constraint-poswitness, set-feature, set-info, set-logic,
set-option, synth-fun, and Variable.

B Reference Grammars
In this section, for convenience, we provide the concrete syntax for grammars that generate exactly the
set of terms that belong to SMT-LIB logics of interest for a fixed set of free variables. In particular, this
means that each of the following synth-fun commands are equivalent to those in which no grammar is
provided. Note this is not intended to be a complete list of logics. In particular, we focus on logics that
include a single background theory whose sorts are not parametric. Each of these grammars are derived
based on the definition of logics and theories described in the theory and logic declaration documents
available at www.smt-lib.org.

For each grammar, we omit the predicate symbols that are shared by all logics according to the
SMT-LIB standard, that is, those included in the core theory described in Section 5.1, which includes
Boolean connectives and equality. We provide the grammar for a single function over one of the sorts in
the logic, and assume it has one variable in its argument list for each non-Boolean sort in the grammar.

B.1 Integer Arithmetic
The following grammar for f generates exactly the integer-typed terms in the logic of linear integer
arithmetic (LIA) with one free integer variable x.

1 ( set-logic LIA)
2 ( synth-fun f ((x Int)) Int
3 (( y_int Int) ( y_const_int Int) ( y_bool Bool))
4 (( y_int Int ( y_const_int
5 ( Variable Int)
6 (- y_int)
7 (+ y_int y_int)
8 (- y_int y_int)
9 (* y_const_int y_int)

10 (* y_int y_const_int )
11 (div y_int y_const_int )
12 (mod y_int y_const_int )
13 (abs y_int)
14 (ite y_bool y_int y_int)))
15 ( y_const_int Int (( Constant Int)))
16 ( y_bool Bool ((= y_int y_int)
17 (> y_int y_int)
18 (>= y_int y_int)
19 (< y_int y_int)
20 (<= y_int y_int)))))

Above, div denotes integer division, mod denotes integer modulus and abs denotes the absolute value
function. Positive integer constants and zero are written using the syntax for numerals ⟨Numeral⟩.
Negative integer constants are written as the unary negation of a positive integer constant.

The following grammar for g generates exactly the integer-typed terms in the logic of non-linear
integer arithmetic (NIA) with one free integer variable x.

1 ( set-logic NIA)
2 ( synth-fun g ((x Int)) Int
3 (( y_int Int) ( y_bool Bool))
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4 (( y_int Int (( Constant Int)
5 ( Variable Int)
6 (- y_int)
7 (+ y_int y_int)
8 (- y_int y_int)
9 (* y_int y_int)

10 (div y_int y_int)
11 (mod y_int y_int)
12 (abs y_int)
13 (ite y_bool y_int y_int)))
14 ( y_bool Bool ((= y_int y_int)
15 (> y_int y_int)
16 (>= y_int y_int)
17 (< y_int y_int)
18 (<= y_int y_int)))))

B.2 Real Arithmetic
The following grammar for f generates exactly the real-typed terms in the logic of linear real arithmetic
(LRA) with one free real variable x.

1 ( set-logic LRA)
2 ( synth-fun f ((x Real)) Real
3 (( y_real Real) ( y_const_real Real) ( y_bool Bool))
4 (( y_real Real ( y_const_real
5 ( Variable Real)
6 (- y_real )
7 (+ y_real y_real )
8 (- y_real y_real )
9 (* y_const_real y_real )

10 (* y_real y_const_real )
11 (/ y_real y_const_real )
12 (ite y_bool y_real y_real )))
13 ( y_const_real Real (( Constant Real)))
14 ( y_bool Bool ((= y_real y_real )
15 (> y_real y_real )
16 (>= y_real y_real )
17 (< y_real y_real )
18 (<= y_real y_real )))))

Notice that positive real constants and zero can either be written as decimal values using the syntax
⟨Decimal⟩ or as rationals, e.g. the division of two numerals (/ m n) where n is not zero. Negative reals
are written either as the unary negation of decimal value or a rational of the form (/ (- m) n) for
numerals m and n where n is not zero.

The following grammar for g generates exactly the real-typed terms in the logic of non-linear real
arithmetic (NRA) with one free real variable x.

1 ( set-logic NRA)
2 ( synth-fun g ((x Real)) Real
3 (( y_real Real) ( y_bool Bool))
4 (( y_real Real (( Constant Real)
5 ( Variable Real)
6 (- y_real )
7 (+ y_real y_real )
8 (- y_real y_real )
9 (* y_real y_real )

10 (/ y_real y_real )
11 (ite y_bool y_real y_real )))
12 ( y_bool Bool ((= y_real y_real )
13 (> y_real y_real )
14 (>= y_real y_real )
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15 (< y_real y_real )
16 (<= y_real y_real )))))

B.3 Fixed-Width Bit-Vectors
The signature of bit-vectors includes an indexed sort BitVec, which is indexed by an integer constant that
denotes its bit-width. We show a grammar below for one particular choice of this bit-width, 32. We omit
indexed bit-vector operators such as extraction function (_ extract m n), the concatenation function
concat, since these operators are polymorphic. For brevity, we also omit the extended operators of this
theory as denoted by SMT-LIB, which includes functions like bit-vector subtraction bvsub, exclusive or
bvxor, signed division bvsdiv, and predicates like unsigned-greater-than-or-equal bvuge and signed-less-
than bvslt. These extended operators can be seen as syntactic sugar for the operators in the grammar
below. Example inputs that involve some of the omitted operators are given in Section 9.

1 ( set-logic BV)
2 ( synth-fun f ((x (_ BitVec 32))) (_ BitVec 32)
3 (( y_bv (_ BitVec 32)) ( y_bool Bool))
4 (( y_bv (_ BitVec 32) (( Constant (_ BitVec 32))
5 ( Variable (_ BitVec 32))
6 (bvnot y_bv)
7 (bvand y_bv y_bv)
8 (bvor y_bv y_bv)
9 (bvneg y_bv)

10 (bvadd y_bv y_bv)
11 (bvmul y_bv y_bv)
12 ( bvudiv y_bv y_bv)
13 ( bvurem y_bv y_bv)
14 (bvshl y_bv y_bv)
15 ( bvlshr y_bv y_bv)
16 (ite y_bool y_bv y_bv)))
17 ( y_bool Bool (( bvult y_bv y_bv)))))

Bit-vector constants may be specified using either the hexadecimal format ⟨HexConst⟩ or the binary
format ⟨BinConst⟩.

B.4 Strings
The syntax below reflects the official version 2.6 release of the theory of Unicode strings and regular
expressions [3]. Some operators (e.g. indexed regular expression operators) have been omitted from the
grammar below for the sake of brevity.

1 ( set-logic S)
2 ( synth-fun f ((xs String ) (xr RegLan ) (xi Int)) String
3 (( y_str String ) (y_rl RegLan ) (y_int Int) ( y_bool Bool))
4 (( y_str String (( Constant String )
5 ( Variable String )
6 (str.++ y_str y_str)
7 (str.at y_str y_str)
8 (str. substr y_str y_int y_int)
9 (str. indexof y_str y_str y_int)

10 (str. replace y_str y_str y_str)
11 (str. from_int y_int)
12 (str. from_code y_int)
13 (ite y_bool y_str y_str)))
14 (y_rl RegLan (( Constant RegLan )
15 ( Variable RegLan )
16 re.none
17 re.all
18 re. allchar
19 (str.to_re y_str)
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20 (re.++ y_rl y_rl)
21 (re.union y_rl y_rl)
22 (re.inter y_rl y_rl)
23 (re.* y_rl)
24 (re.+ y_rl)
25 (re.opt y_rl)
26 (re.range y_str y_str)
27 (y_int Int (( Constant Int)
28 ( Variable Int)
29 (str.len y_str)
30 (str. to_int y_str)
31 (str. to_code y_str)
32 (ite y_bool y_int y_int)))
33 ( y_bool Bool (( Constant Bool)
34 ( Variable Bool)
35 (str.in_re y_str y_rl)
36 (str. contains y_str y_str)
37 (str. prefixof y_str y_str)
38 (str. suffixof y_str y_str)
39 (str.< y_str y_str)
40 (str.<= y_str y_str)
41 (str. is_digit y_str)))))

String constants may be specified by text delimited by double quotes based on the syntax ⟨StringConst⟩
described in Section 2.2. The sort RegLan denotes the regular expression sort. Its values are all ground
(i.e. variable free) regular expressions.

Notice that since the logic specified above is S. The signature of this logic includes some functions
involving the integer sort like str.len. However, the above logic does not permit inputs containing
integer constants or the standard symbols of arithmetic like +, -, >= and so on, since the logic S does not
include the theory of integer arithmetic. Thus in pratice, the string theory is frequently combined with
the theory of integers in the logic SLIA, i.e. strings with linear integer arithmetic.

C Language Features of SMT-LIB not Covered
For the purpose of self-containment, many of the essential language features of SMT-LIB version 2.6 are
redefined in this document. However, other less essential ones are omitted. We briefly mention other
language features not mentioned in this document. We do not require solvers to support these features.
However, we recommend that if solvers support any of the features below, they use SMT-LIB compliant
syntax, as described briefly below.

Parametric Datatype Definitions We do not cover the concrete syntax or semantics of parametric
datatypes (that is, datatypes whose arity is non-zero) in this document. An example of a datatype
definition for a parametric list is given below.

1 (declare - datatypes (( List 1)) (
2 (par (T) (( nil) (cons (head T) (tail (List T)))))))

Above, the datatype List is given in the predeclaration with the numeral 1, indicating its arity is one. The
datatype definition that follows includes quantification on a type parameter T, where this quantification
is specified using the par keyword. Within the body of this quantification, a usual constructor listing is
given, where the type parameter T may occur free. The constructors of this datatype are nil and cons.

Qualified Identifiers In SMT-LIB version 2.6, identifiers that comprise terms may be qualified with
a type-cast, using the keyword as. Type casts are required for symbols whose type is ambiguous, such
as parametric datatype constructors, e.g. the nil constructor for a parametric list For the parametric
datatype above, (as nil (List Int)) and (as nil (List Real)) denote the type constructors for the
empty list of integers and reals respectively.
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Match Terms The SMT-LIB version 2.6 includes a match term that case splits on the constructors of
datatype terms. For example, the match term:

1 (match x (( nil (- 1)) (( cons h t) h)))

returns negative one if the list x is empty, or the first element of x (its head) if it is non-empty.

Recursive Functions The SMT-LIB version 2.6 includes a command define-fun-rec for defining
symbols that involve recursion.6 An example, which computes the length of a (non-parametric) list is
given below.

1 (define -fun -rec len ((x List)) Int
2 (match x (( nil 0) (( cons h t) (+ 1 (len t))))))

Functions may be defined to be mutually recursive by declaring them in a single block using the
define-funs-rec command. An example, which defines two predicates isEven and isOdd for determining
whether a positive integer is even and odd respectively, is given in the following.

1 (define -funs -rec (
2 ( isEven ((x Int)) Bool)
3 (isOdd ((x Int)) Bool)
4 )(
5 (ite (= x 0) true (isOdd (- x 1)))
6 (ite (= x 0) false ( isEven (- x 1)))
7 ))

Notice that recursive function definitions are not required to be terminating (the above functions do not
terminate for negative integers). They are not even required to correspond to consistent definitions, for
instance:

1 (define -fun -rec inconsistent ((x List)) Int
2 (+ ( inconsistent x) 1))

The semantics of recursive functions is given in the SMT-LIB version 2.6 standard [3]. Each recursive
function can be seen as a universally quantified constraint that asserts that each set of values in the
domain of the function is equal to its body.

Additional Logics and Theories Several standard logics and theories are omitted from discussion
in this document. This includes the (mixed) theory of integers and reals, the theory of floating points,
the integer and real difference logic, and their combinations. More details on the catalog of logics and
theories in the SMT-LIB standard is available at www.smt-lib.org.

6Recall that recursive definitions are prohibited from macro definitions in the command define-fun.
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