
OASIS: ILP-Guided Synthesis of Loop Invariants

Sahil Bhatia†, Saswat Padhi§, Nagarajan Natarajan†, Rahul Sharma†, Prateek Jain†
†Microsoft Research India

§University of California, Los Angeles
{t-sab,nagarajn,rahsha,prajain}@microsoft.com, padhi@cs.ucla.edu

Abstract

Automated synthesis of inductive invariants is an important problem in software
verification. We propose a novel technique that is able to solve complex loop
invariant synthesis problems involving large number of variables. We reduce the
problem of synthesizing invariants to a set of integer linear programming (ILP)
problems. We instantiate our techniques in the tool OASIS that outperforms state-
of-the-art systems on benchmarks from the invariant synthesis track of the Syntax
Guided Synthesis competition.

1 Introduction

Program verification aims to provide a strong guarantee on the correctness of an implementation
by formally proving that it meets a desired property, such as termination, correctness of assertions,
memory safety, and more. Inferring inductive invariants is one of the core problems of program
verification. Many verified-programming environments [6, 8, 14] require users to furnish the right
invariants. However, it can be quite challenging, even for expert programmers, to annotate these
invariants for simple practical cases.

Loop invariant is a predicate over the program state that is preserved across each iteration of the
loop. Consider a simple loop, while G do S, which executes the statement S until the condition
(loop guard) G holds and then it halts. Then, a predicate I is said to be a sufficient loop invariant
and validates a Hoare triple {ρ} while G do S {φ}, if it satisfies the following three verification
conditions:

VCpre : ρ =⇒ I, i.e., I must hold immediately before the loop
VCind : {G ∧ I} S {I}, i.e., I must be inductive (hold after each iteration)
VCpos : ¬G ∧ I =⇒ φ, i.e., I must certify the postcondition upon exiting the loop

Traditionally successful approaches are based on enumerating all possible expressions for the invariant.
Recent prior work [13, 15] propose using machine learning (ML) and continuous optimization
techniques to synthesize invariants. A key issue is that while continuous optimization is highly
efficient for solving a problem approximately, invariant synthesis demands finding an exact solution.

We propose a tool OASIS1 that takes as input logic formulas which encode the verification of safety
properties of programs over integer variables and outputs inductive invariants that are sufficient to
prove the properties. To this end, OASIS employs new ML algorithms for the well-known binary
classification problem: the learner’s goal is to find a classifier that separates positive and negative
examples. In the context of invariant synthesis, an example is a program state that maps variables to
integers. OASIS makes the following contributions.

First, OASIS uses binary classification to infer relevant and irrelevant variables (Section 2.2). It
uses symbolic execution to generate reachable states (positive examples) and bad states (negative
examples), which are backward reachable from states that violate the safety properties. Then it finds
a sparse classifier and we classify the variables occurring in the classifier as relevant. If a variable is
1 The name OASIS stands for Optimization And Search for Invariant Synthesis.

absent from the classifier and it is possible to separate samples of reachable states from bad states
without using the variable then it is likely to be irrelevant to the invariant.

Second, OASIS uses a learner to synthesize Boolean features from data. OASIS is based on LOOP-
INVGEN [10, 11] that breaks down the problem of invariant synthesis into many small binary
classification tasks and uses Escher [3] to find features that solve them. Specifically, Escher exhaus-
tively enumerates all features in increasing size till it finds one that separates the positive examples
from the negative examples in the small task. OASIS replaces Escher with a learner to find such
features. OASIS uses the same learner to solve both these problems, i.e., inferring relevant variables
and inferring features.

We evaluate OASIS on 403 benchmarks from the invariant (Inv) track of the Syntax Guided Synthesis
(SyGuS) competion held in 2019 [2]. Our evaluation shows that OASIS significantly improves
invariant synthesis on these benchmarks.

2 Overview of Our Approach

2.1 Relevant Variables

Algorithm 1 OASIS framework for scaling loop invariant inference

1 func Oasis (〈pre ,trans ,post〉 : Verification Problem, ~σ+ : States, ~σ− : States)

2 Classifier C ← Learn(~σ+,~σ−)
3 if C = ⊥ then return ⊥
4 Variables ~r ← FilterVariables(C)
5 do parallel
6 in thread 1 do
7 ~σ ← FindPosCounterExample(〈pre ,trans ,post〉, C)
8 if ~σ 6= ⊥ then return Oasis(〈pre ,trans ,post〉,~σ+ ∪ {~σ},~σ−)

9 in thread 2 do
10 ~σ ← FindNegCounterExample(〈pre ,trans ,post〉, C)
11 if ~σ 6= ⊥ then return Oasis(〈pre ,trans ,post〉,~σ+,~σ− ∪ {~σ})
12 in thread 3 do
13 I ← RelInfer(〈pre ,trans ,post〉,~σ+,~σ−, ~r)

∣∣
timeout = τ

14 if I 6= ⊥ then return I

Our core framework, called OASIS, is outlined in Algorithm 1. OASIS accepts a verification problem
(encoded as a triple 〈pre , trans , post〉), and some sampled positive (~σ+) and negative (~σ−)
program states typically sampled randomly. We first invoke the LEARN function with these sampled
states to learn a predicate C that separates ~σ+ and ~σ− We detail the LEARN function in Section 3,
which utilizes machine-learning techniques to efficiently find a sparse separator for ~σ+ and ~σ−.
In line 4 we drop irrelevant variables, those that do not affect the prediction of the classifier over
~σ+ ∪ ~σ−, and consider the remaining variables ~r ⊆ ~x (~x is the set of all variables in the program) to
be a candidate set of relevant variables.

After a set ~r of relevant variables is identified, in lines 2 – 11, we try to refine the set of relevant
variables and find a sufficient invariant over them in parallel. In particular, we execute the following
three threads in parallel:

1. one that attempts to find a positive state misclassified by the classifier
2. one that attempts to find a negative state misclassified by the classifier
3. one that runs invariant inference using the currently identified relevant variables

2.2 Refining Relevant Variables

We now detail our procedures for refining a set of relevant variables. Each of these procedures returns
a program state that is misclassified by the current classifier C, which is then used to learn a new
classifier, and thus a new set of relevant variables.

The FINDPOSCOUNTEREXAMPLE procedure identifies positive misclassifications — a reachable
program state ~σ that the classifier labels as a negative state, i.e., ¬C(~σ). To identify such states,

2

we gradually expand the frontier of reachable states starting from the precondition pre and then
repeatedly applying the transition relation trans .

The FINDNEGCOUNTEREXAMPLE procedure works in a very similar manner and identifies negative
misclassifications — a bad program state ~σ (one that would lead to violation of the final assertion)
that the classifier labels as a positive state, i.e., C(~σ). To identify such states, we gradually expand
the frontier of known bad states starting from those that violate the postcondition postand then
repeatedly reversing the transition relation trans .

Once we have a set of relevant variables from the learned classifier, we run our invariant inference
algorithm RELINFER (in thread 3) with these variables together with all the positive states (~σ+) and
negative states (~σ−) sampled so far. OASIS builds over LOOPINVGEN, we refer to the LOOPINVGEN
paper [10] for details on the RELINFER algorithm. They key difference is while LOOPINVGEN learns
features over all variables ~x in the program, RELINFER only learns features over ~r.

3 The ILP Formulation

In this section, we formulate the problem of generating a classifier that separates positive program
states from negative program states. By default, the output classifier predicate can use any of the
program variables. If we restrict the classifier to use only a subset ~r of variables then we first project
the examples to ~r and then learn a classifier over the projected states. Let x denote a vector of
program variables that can occur in the classifier. We model the problem of inferring a classifier
h : Z|x| → {True, False} as a search problem over the following class of CNF predicates with nc
denoting the number of conjuncts and nd the number of disjuncts in each conjunct:

HCNF =

{ ∧
c∈[C]

∨
d∈[D]

〈wcd, x〉+ bcd > 0

}
. (1)

where b ∈ Z and 〈w, x〉 + b is an inner product between a vector w ∈ Z|x| and x. We use [n] to
denote the list {0, 1, . . . , n− 1}.
Consider the search problem (1) above: formally, we want to find a predicate h ∈ HCNF that accurately
classifies a given set of labeled program states {σn, yn}Nn=1, where yn ∈ {0, 1}. It is convenient to
think of h as a tree of depth 3: the program variables form the input layer to the linear inequalities,
which are grouped by

∨
operators to yield disjunctive predicates. The root node is the

∧
operator

that represents conjunction of the predicates represented by the second layer. The reduction of the
search problem to ILP is given as follows.

(Input layer: Thresholded polynomials) Write zncd = 1 {〈wcd, σn〉+ bcd > 0} ∈ {0, 1}. This is
captured by the following constraints, for a sufficiently large integer M :

∀n ∈ [N], c ∈ [C], d ∈ [D], −M(1− zncd) < 〈wcd, σn〉+ bcd ≤ Mzncd,

wcd ∈ Z|x| , bcd ∈ Z , zncd ∈ {0, 1}. (2)

(Middle layer: Disjunctions) Note that the value of the c-th conjunct on a given input σn corresponds
to summing zncd over d, i.e., write y∨nc =

∨
d∈[D] zncd. This is captured by:

∀n ∈ [N], c ∈ [C], −M(1− y∨nc) <
∑
d∈[D]

zncd ≤ My∨nc,

y∨nc ∈ {0, 1}. (3)

(Final layer: Conjunction) The predicted label on a given input state is given by a conjunction of
the above disjunctions. Requiring that the predicted label match the observed label for each example
is equivalent to the following constraints:

for n ∈ [N] s.t. yn = 1,
∑
c∈[C]

y∨nc ≥ C ,

for n ∈ [N] s.t. yn = 0,
∑
c∈[C]

y∨nc ≤ C − 1 . (4)

3

The search problem can now be stated as the ILP problem: find a feasible integral solution
{z, y∨,w, b} subject to the constraints Equations (2), (3) and (4) combined.

Now, consider the problem of learning generalizable predicates (2). To this end, we follow the
Occam’s razor principle – seeking predicates that are “simple” and have been shown to generalize
better [10]. Simplicity in our case can be characterized by the size of the predicate clauses and
the magnitude of the coefficients. One way to achieve this is by constraining the L1-norm of the
coefficients w. Note that L1-norm can be expressed using linear constraints: ‖w‖1 = 〈1,w++w−〉,
where w+ ≥ 0 and w− ≥ 0 (componentwise inequality) such that w = w+ −w−.

To learn shortest predicate we penalize the inclusion of variables in the solution by using a penalty µ
where µj = 0 iff ∀c ∈ [C].∀d ∈ [D]. (wcd)j = 0. Our final objective function combines both the
penalties:

min
w,w+,w−,b,z,y∨,µ

∑
c∈[C],d∈[D]

〈1,w+
cd +w−cd〉 + λ〈1, µ〉

subject to Equations (2), (3) and (4), and

1−M(1− µ) ≤
∑

c∈[C],d∈[D]

w+
cd +w−cd ≤ Mµ,

∀c ∈ [C], d ∈ [D], wcd = w+
cd −w−cd,

w+
cd ≥ 0 , w−cd ≥ 0 , µ ∈ {0, 1}|x|. (5)

4 Experimental Evaluation

We have implemented OASIS using the LOOPINVGEN [10] framework in OCaml, and using Z3 [7] as
the theorem prover for checking validity of the verification conditions. We implemented our logic for
reducing the classification problem to ILPs in a Python script, which discharges the ILP subproblems
to the OR-Tools [1] optimization package from Google. We evaluate OASIS on commodity hardware
— CPU-only machines with up to 32 GB RAM running Ubuntu Linux 18.04.

Solvers and Benchmarks. We compare OASIS, against three tools: (1) LOOPINVGEN [10] which
uses data-driven invariant synthesis (2) CVC4 [5, 12] which uses a refutation-based approach
(3) DRYADSYNTH [9] which uses a combination of enumerative and deductive synthesis (cooperative
synthesis). CVC4 and LOOPINVGEN are respectively the winners of the invariant-synthesis (Inv)
track of SyGuS-Comp’19 [2] and SyGuS-Comp’18 [4]. Recently, [9] showed that DRYADSYNTH’s
cooperative synthesis technique is able to perform better than LOOPINVGEN and CVC4 on invariant
synthesis tasks.We evaluate our technique on 403 instances which were part of the SyGuS-Comp’19 [2]
and were the invariant synthesis benchmarks used to evaluate [9]. All these instances require
quantifier free reasoning over linear arithmetic.

Tool Solved
(out of 403)

CVC4 287
DRYADSYNTH 346
LOOPINVGEN 272

OASIS 353
Table 1: Comparison between OASIS and SyGuS competitors, on the 403 instances which were part
of the SyGuS-Comp’19 [2].

Results. We report the number of instances each tool solves with a timeout of 30 minutes2 in
Table 1. OASIS synthesizes sufficient loop invariants on 353 instances, 7 more than the second
best tool and 66 more than CVC4, the winner of invariant-synthesis (Inv) track of SyGuS-Comp’19.
OASIS is able to solve 13 instances which no other tool can solve.

2 [9] uses a timeout of 30 minutes and we keep the same timeout.

4

References
[1] OR-Tools – Google Optimization Tools. https://github.com/google/or-tools, Accessed: 2019-05-23.

[2] The Syntax-Guided Synthesis Competition. https://sygus.org, Accessed: 2019-05-23.

[3] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive program synthesis. In Natasha
Sharygina and Helmut Veith, editors, Computer Aided Verification - 25th International Conference, CAV
2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of Lecture Notes in Computer
Science, pages 934–950. Springer, 2013.

[4] Rajeev Alur, Dana Fisman, Saswat Padhi, Rishabh Singh, and Abhishek Udupa. SyGuS-Comp 2018:
Results and Analysis. CoRR, abs/1904.07146, 2019. URL http://arxiv.org/abs/1904.07146.

[5] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim King,
Andrew Reynolds, and Cesare Tinelli. CVC4. In Computer Aided Verification - 23rd International
Conference (CAV), volume 6806 of Lecture Notes in Computer Science. Springer, 2011. URL https:
//doi.org/10.1007/978-3-642-22110-1_14.

[6] Edwin Brady. Idris, a general-purpose dependently typed programming language: Design and im-
plementation. Journal of Functional Programming, 23(5), 2013. URL https://doi.org/10.1017/
S095679681300018X.

[7] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In Tools and Algorithms
for the Construction and Analysis of Systems, 14th International Conference (TACAS), volume 4963 of Lec-
ture Notes in Computer Science. Springer, 2008. URL https://doi.org/10.1007/978-3-540-78800-3_
24.

[8] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 - Where Programs Meet Provers. In Programming
Languages and Systems - 22nd European Symposium on Programming (ESOP), volume 7792 of Lecture
Notes in Computer Science. Springer, 2013. URL https://doi.org/10.1007/978-3-642-37036-6_8.

[9] Kangjing Huang, Xiaokang Qiu, Peiyuan Shen, and Yanjun Wang. Reconciling enumerative and deductive
program synthesis. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2020, page 1159–1174, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450376136. doi: 10.1145/3385412.3386027. URL https:
//doi.org/10.1145/3385412.3386027.

[10] Saswat Padhi, Rahul Sharma, and Todd D. Millstein. Data-Driven Precondition Inference with Learned
Features. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). ACM, 2016. URL https://doi.org/10.1145/2908080.2908099.

[11] Saswat Padhi, Todd Millstein, Aditya Nori, and Rahul Sharma. Overfitting in Synthesis: Theory and
Practice. In Computer Aided Verification - 30th International Conference (CAV), Lecture Notes in Computer
Science. Springer (To Appear), 2019. URL https://arxiv.org/pdf/1905.07457.

[12] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark W. Barrett. Counterexample-
Guided Quantifier Instantiation for Synthesis in SMT. In Computer Aided Verification - 27th International
Conference (CAV), volume 9207 of Lecture Notes in Computer Science. Springer, 2015. URL https:
//doi.org/10.1007/978-3-319-21668-3_12.

[13] Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. Learning Loop Invariants for
Program Verification. In Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems (NeurIPS), 2018. URL http://papers.nips.cc/paper/
8001-learning-loop-invariants-for-program-verification.

[14] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang.
Secure Distributed Programming with Value-Dependent Types. Journal of Functional Programming, 23
(4), 2013. URL https://doi.org/10.1017/S0956796813000142.

[15] He Zhu, Stephen Magill, and Suresh Jagannathan. A Data-Driven CHC Solver. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM, 2018.
URL https://doi.org/10.1145/3192366.3192416.

5

https://github.com/google/or-tools
https://sygus.org
http://arxiv.org/abs/1904.07146
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1145/2908080.2908099
https://arxiv.org/pdf/1905.07457
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/978-3-319-21668-3_12
http://papers.nips.cc/paper/8001-learning-loop-invariants-for-program-verification
http://papers.nips.cc/paper/8001-learning-loop-invariants-for-program-verification
https://doi.org/10.1017/S0956796813000142
https://doi.org/10.1145/3192366.3192416

	Introduction
	Overview of Our Approach
	Relevant Variables
	Refining Relevant Variables

	The ILP Formulation
	Experimental Evaluation

