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Abstract—We describe the LOOPINVGEN tool for generating
loop invariants that can provably guarantee correctness of a
program with respect to a given specification. LOOPINVGEN is
an efficient implementation of the inference technique proposed
in our earlier work on the precondition inference engine (PIE).

In contrast to existing techniques, LOOPINVGEN is not re-
stricted to a fixed set of features – atomic predicates that are
composed together to build complex loop invariants. Instead,
we start with no initial features, and use program synthesis
techniques to grow the set on demand. This not only enables
a less onerous and more expressive approach, but also appears
to be significantly faster than the existing tools over the SyGuS-
Comp 2018 benchmarks from the INV track.

I. INTRODUCTION

Formally proving the correctness of a program with respect to
a given specification, can be largely automated when the ap-
propriate program invariants are available. Yet, the problem of
learning the adequate invariants in the first place, remains quite
challenging. Traditional static approaches that reason over the
program structure to deduce sufficient invariants, are often
inapplicable to real-life cases simply because the program
logic is far too complex to be analyzable. However, it is often
the case that complex real-life programs have relatively simple
invariants that certify their correctness relative to properties of
practical interest. In such cases, data-driven approaches seem
to perform well. These techniques learn a candidate invariant
by examining program behavior (as opposed to structure), and
then refine it till it is sufficiently strong.

We extend the data-driven paradigm for inferring sufficient
loop invariants. Given some sets of “good” and “bad” program
states, data-driven approaches learn a candidate invariant as
a boolean combination of atomic predicates (called features)
defined on states, such that it is satisfied by the good states
and falsified by the bad ones. Prior techniques are restricted to
using a fixed set, or a fixed template for features. For instance,
a state-of-the-art technique, ICE-DT [5] requires the shape of
constraints (such as octagonal) to be fixed apriori1. A fixed set
of features not only limits the expressiveness, but predicting
such a set, which would be adequate for learning a sufficiently
strong invariant is also quite challenging [7].

We present LOOPINVGEN, a data-driven tool for inferring
sufficient loop invariants, which starts with no initial fea-

1 ICE-DT also requires specialized learners for boolean formulas, which can
utilize the implication counterexamples.
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Fig. 1: The key components in LOOPINVGEN and their interdependence.

tures, and automatically learns features as necessary using
program synthesis techniques. LOOPINVGEN is an optimized
implementation of the general inference technique proposed
in our prior work on data-driven precondition inference [7]. It
reduces the problem of loop invariant inference to a series
of precondition inference problems, and alternates between
two phases to converge to a sufficient invariant: (1) learning
a candidate invariant by solving the appropriate precondition
inference problem, and (2) checking if the learned candidate is
sufficient for proving correctness. If a candidate is insufficient,
a counterexample is extracted from the checker, and is used
to guide the learning phase towards the desired invariants.

Our technique is modular, and makes no assumptions on the
specific program synthesizer used for feature synthesis, except
that the language of the synthesizer must be compatible with
the theorem prover employed for checking. The synthesizer
utilized by LOOPINVGEN is currently restricted to expressions
over the theory of linear integer arithmetic (LIA), which is the
sole focus of the INV track of SyGuS-Comp 2019.

II. OVERVIEW

Figure 1 shows a high-level schematic of LOOPINVGEN. It
consists of three major components: (1) PROCESS – performs
simplifications using static analysis, (2) RECORD – collects
the data required to drive the inference, and (3) INFER –
uses the PIE and CHECK subcomponents to learn candidate
invariants, and verify that they satisfy the desired properties.
The PIE subcomponent further depends on a boolean-function
learner BFL and a feature synthesizer SYNTH, as detailed in
a prior work [7]. We use a standard PAC learning algorithm
for BFL and the hybrid enumeration algorithm (HENUM) [8]
for SYNTH.
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1 (set-logic LIA)

3 (synth-inv inv-f ((x Int) (y Int)
4 (z1 Int) (z2 Int) (z3 Int)))

6 (declare-primed-var x Int)
7 (declare-primed-var y Int)
8 (declare-primed-var z1 Int)
9 (declare-primed-var z2 Int)
10 (declare-primed-var z3 Int)

12 (define-fun pre-f ((x Int) (y Int)
13 (z1 Int) (z2 Int) (z3 Int)) Bool
14 (= x 1))

17 (define-fun trans-f ((x Int) (y Int)
18 (z1 Int) (z2 Int) (z3 Int)
19 (x! Int) (y! Int)
20 (z1! Int) (z2! Int) (z3! Int)) Bool
21 (and (< x y) (= x! (+ x x))))

23 (define-fun post-f ((x Int) (y Int)
24 (z1 Int) (z2 Int) (z3 Int)) Bool
25 (or (not (>= x y)) (>= x 1)))

27 (inv-constraint inv-f pre-f trans-f post-f)

29 (check-synth)

Fig. 2: The trex1_vars benchmark from SyGuS-Comp 2016 (INV track).

In the following subsections, we briefly describe each of
these subcomponents, and illustrate them with the help of a
running example. We consider a program, listed in Fig. 2,
in which x is iteratively doubled starting from 1 till (x >
y), and y may be arbitrarily updated at each iteration. The
goal is to verify that (x > 1) always holds after the loop.
The SyGuS-INV format [1] used in Fig. 2, allows encoding
the semantics of the program along with a desired functional
specification. For the rest of the paper, we use the quadruplet
〈P, T,Q,∆〉 to denote an arbitrary SyGuS-INV problem —
P being the precondition, Q the postcondition, T the state
transition relation, and ∆ the remaining relations, if any.

A. PROCESS: Simplification using Static Analysis

This first component statically analyzes a given SyGuS-
INV problem, and generates a simplified problem which is
propagated to the subsequent components. Moreover, it also
performs basic syntactic and semantic checks to ensure validity
of the problem, and serializes it to a binary format that can
be directly deserialized, eliminating the need to re-parse the
specification within the subsequent components.

Currently, the PROCESS component only performs an un-
used variable elimination over a given SyGuS-INV problem
〈P, T,Q,∆〉. For this analysis, we define “use” of a variable
v as its presence within either the specification (P or Q), or
the state transition relation (v or v′ in T ), upon inlining all
other relations from ∆. This analysis reduces the variables that
we consider during invariant synthesis later – unused program
variables should not affect the validity of the postcondition.

To eliminate unused variables, we first construct a call graph
of all the relations, and perform 3 topological sorts over them
rooted at P , Q and T . Then, starting with the leaf nodes

func RECORD(〈P, T,Q,∆〉 : SyGuSINV, V : String[ ], n : Int)
Result: A collection of program states Z : State[ ].
1 Z ← {}
2 while true do
I Start with a previously unseen model of the precondition.
3 m← GETMODEL(∆ ∧ P (m) ∧ (

∧
s∈Z m 6= s), V )

4 if m = None then break
5 Z ← Z ∪ RECORDSTATESFROM(m,n)
6 if |Z| = n then break
7 return Z

func RECORDSTATESFROM(m : State, k : Int)
Result: A sequence 〈m,m1,m2, · · · ,ml〉 of states, where l < k.
1 Z ← 〈m〉
2 while |Z| < k do
I Make a transition, i.e. execute a single iteration of the loop.
3 m← GETMODEL(∆ ∧ T (m,m′), {v′ | v ∈ V })
4 if m = None then break else Z ← Z ◦ 〈m〉
5 return Z

Fig. 3: An outline of the RECORD component of LOOPINVGEN.

in each sorted order, we label the “used” formal parameters
VR for each relation R, referring to the labels assigned to its
callees’ formal parameters, at each invocation point. Finally,
we compute the set of all used variables as:

V = VP ∪ {v | v ∈ VT ∨ v′ ∈ VT } ∪ VQ

For our running example from Fig. 2, we would have:

VP = {x} ; VT = {x, y, x′} ; VQ = {x, y} V = {x, y}

B. RECORD: Sampling Reachable Program States

This component collects a sample of the program states
reachable at the two locations where a loop invariant must hold
– (1) the beginning of each loop iteration, and (2) just after
exiting the loop. To collect these states for programs encoded
in the SyGuS-INV format [1], we use a constraint solver as
an execution engine2. We present an outline of the RECORD
algorithm in Fig. 3, which invokes a constraint solver within
the GETMODEL procedure. The algorithm accepts a SyGuS-
INV problem 〈P, T,Q,∆〉, the set V of variables to track, the
desired number n of program states, and returns the set Z of
the states of the variables in V .

In line 3, we start with an unseen model of the precondition,
which is a state of the program at beginning of the first
iteration. For instance, (x 7→ 1) is one such model for
our running example from Fig. 2, with V = {x, y}. The
GETMODEL function accepts a predicate, a list of variables,
and returns a satisfying assignment for them. Note that this
is not a complete state of the program since the variable y
is unbound. In such cases, GETMODEL employs a pseudo-
random number generator to extend the model to a complete
program state, assigning arbitrary values to unconstrained
variables. For our running example, such program states could,
for instance, be (x 7→ 1 ∧ y 7→ −3), or (x = 1 ∧ y = 7) etc.

2 Our original technique [7] instrumented C/C++ programs, and collected
program states during execution of the program.



func INFER(〈P, T,Q,∆〉 : SyGuSINV,Z : State[ ],Θ: Config)
Result: A sufficient loop invariant I : State→ Bool.

I Start with the weakest invariant that satisfies ∀s : I(s) ⇒ Q(s).
1 I ← Q

I Iteratively strengthen I till it is inductive.
2 while true do
3 B ← {}
4 while true do
5 ρ← PIE(Z, B,Θ)
6 c← CHECK(∀s, t : ρ(s) ⇒ I(s) ∧ T (s, t)⇒I(t))
7 if c = None then break else B ← B ∪ {c}
8 I ← I ∧ ρ
I Weaken I using counterexamples, if it is stronger than P .
9 c← CHECK(∀s : P (s)⇒ I(s))

10 if c 6= None then
11 S ← RECORDSTATESFROM(c,Θ[NumStepsOnRestart])
12 return INFER(〈P, T,Q,∆〉,Z ∪ S)
13 else if ρ = true then break
14 return I

Fig. 4: An outline of the INFER component of LOOPINVGEN.

In lines 5 – 8, we execute several iterations of the loop body,
and collect the program states at the loop head each time. In
the SyGuS-INV encoding, executing a single iteration of the
loop is equivalent to making a transition from the current state.
In line 6, we solve for the next program state resulting from
such a transition, and save it to Z in line 7. For our running
example, the state (x 7→ 1∧y 7→ 7) will transition to (x 7→ 2),
that could be extended to (x 7→ 2 ∧ y 7→ −2), for example.
Note that no further transitions are possible from this state,
since 2 6< −2 (implicit loop guard in the transition relation).

If we reach such a state from which no transitions are
possible, and the set Z of collected program states contains
less than the desired number n of states then, in line 3, we
start with an unseen state (which is not already in the set Z).

C. INFER: Generating Sufficiently Strong Loop Invariants

This component uses the program states collected by RECORD
to infer a loop invariant that is sufficient for proving correct-
ness of a given SyGuS-INV problem 〈P, T,Q,∆〉. We outline
our INFER algorithm in Fig. 4, which given a SyGuS-INV
problem 〈P, T,Q,∆〉, a set Z of reachable states, and a set
Θ of configuration parameters, returns an invariant I.

A sufficient loop invariant I must satisfy three conditions:
• Weaker than precondition: ∀s : P (s)⇒ I(s)
• Inductive over loop body: ∀s, t : I(s) ∧ T (s, t)⇒ I(t)
• Stronger than postcondition: ∀s : I(s)⇒ Q(s)

As shown in Fig. 1, INFER relies on an off-the-shelf theorem
prover CHECK for verifying these conditions, and employs
PIE [7] to refine candidate invariants. In line 1, it starts with
the weakest possible candidate3, I = Q, and iteratively refines
I till all of the above properties are satisfied. For instance, on
our running example from Fig. 2, INFER starts with the initial
candidate invariant I0 = ((x < y) ∨ (x > 1)).

3 Our original technique [7] used PIE to learn the initial candidate invariant
I as one that satisfies {I} skip {Q}. We found this initial candidate to be
too strong sometimes, requiring additional counterexamples to weaken it.

However, this candidate invariant is not inductive. The state
(x 7→ 0 ∧ y 7→ 1) satisfies I, but it may transition to state
(x 7→ 0 ∧ y 7→ 0), which violates I. In lines 2 – 13, INFER
employs a strengthening loop (inspired by HOLA [4]), to
ensure inductiveness of the candidate. At the ith iteration, it
learns a precondition ρi under which the candidate invariant is
preserved after a single transition. For our running example,
ρ1 = (x > 1), for instance, would ensure that our candidate
invariant I0 = ((x < y) ∨ (x > 1)) is preserved. In line 8,
we strengthen the candidate invariant by conjoining it with
the learned precondition. For our running example, the new
candidate I1 = I0 ∧ ρ1 = (x > 1) is indeed inductive.

The reduction to a precondition inference problem allows
us to leverage our prior work, PIE, on learning preconditions
with automatic synthesis of appropriate features4. In line 5,
PIE accepts a set Z of states which lead to satisfaction of a
desired property, a set B of states which do not, the set Θ
of configuration parameters (such as conflict group size [7]),
and learns a likely precondition ρ for the desired property.
Since the precondition is only a likely one, in line 6, INFER
checks the likely precondition using CHECK for sufficiency,
and provides counterexamples to PIE iteratively, in lines 4 – 7,
till a provably sufficient precondition is learned.

Conjoining the current candidate invariant I with the pre-
condition ρ, might however result in the next candidate I ∧ ρ
being too strong, in particular, stronger than the precondition
P . Therefore, in line 9, we use CHECK to verify that it is
weaker than P . A counterexample in this case would indicate
a state that is allowed by the precondition, but not covered by
the candidate invariant. This could happen due to inadequate
exploration of program states during the RECORD phase, for
instance due to a complex transition relation. On finding such
a counterexample c, we invoke RECORDSTATESFROM (from
Fig. 3) to collect a few more (NumStepsOnRestart parameter
in Θ) states starting from c, in line 11, to account for the
unexplored program behavior. Finally, in line 12, we restart
with the new set of available program states. Note that if
no such counterexample is found and the current candidate
unconditionally holds (i.e. ρ = true), as is the case with
the candidate I = (x > 1) for our running example,
then our current candidate invariant is provably sufficient for
guaranteeing correctness of 〈P, T,Q,∆〉.

III. IMPLEMENTATION

Our implementation of LOOPINVGEN is open source, and is
available at https://github.com/SaswatPadhi/LoopInvGen.
For its various components, LOOPINVGEN internally uses the
following off-the-shelf algorithms or implementations:
• Both GETMODEL and CHECK are implemented using the

Z3 [3] theorem prover. Our prior work used CVC4 [2]
for reasoning over the theory of strings, which is beyond
the scope of INV track of SyGuS-Comp 2018. However,
constraint solving with both Z3 and CVC4 in parallel is
still in progress.

4 PIE uses two off-the-shelf components: (1) a program synthesizer SYNTH
to generate new features, and (2) a boolean function learner BFL to learn a
composition of these features. The details are presented in our full paper [7].

https://github.com/SaswatPadhi/LoopInvGen


• PIE uses the HENUM [8] algorithm for grammar-based
expression synthesis. The language for synthesis has been
shrunk to only allow expressions over LIA theory.

• The BFL component in PIE uses a standard probably
approximately correct (PAC) algorithm that can learn
arbitrary conjunctive normal form (CNF) formula, and
is biased towards small formulas [6].

MAJOR IMPLEMENTATION CHANGES

Since SyGuS-Comp 2018:
• PLEARN [8] – We now run several parallel instances of

INFER each with a different subgrammar of the LIA/NIA
grammar. This significantly reduces chances of overfitting
and hence improves inference time, as described in our
recent work [8].

• Hybrid Enumeration [8] – Within PIE, we now use the
hybrid enumeration technique for feature synthesis. As
detailed in our recent work [8], this technique interleaves
exploration of subgrammars of varying expressiveness,
and typically results in significantly faster convergence.

• Early Postcondition Check – The PROCESS component
now checks if the postcondition itself is a sufficient
loop invariant, even before sampling any program states
(RECORD) and invoking inference (INFER).

• Multiple Counterexamples – We observed that adding
multiple counterexamples (32) instead of just one (see
line 6 of Fig. 4) significantly reduces the number of
CEGIS rounds and results in faster convergence.

Since SyGuS-Comp 2017:
• PROCESS – We now have a static analysis pass before

the RECORD and INFER components (see Section II-A).
• Early Precondition Check – As opposed to finally check-

ing if an inductive invariant is weaker than the precondi-
tion, we now check this property at each strengthening.

• AST Pruning – We have implemented a syntactic check-
ing phase before ESCHER’s semantic checks, that prunes
redundant ASTs such as (_ + x - x) or (1 * _) etc.

• Better SyGuS-IF [1] Support – We have added support for
defining and invoking arbitrary auxiliary relations, other
than precondition, postcondition and transition relations.

• Beyond LIA Theory – We have implemented experimen-
tal support for theory of Non-Linear Integer Arithmetic
(NLIA), which may be activated using the command:
(set-logic NLIA).

Since First Publication [7]:
• RECORD Coverage – The RECORD component has been

significantly improved to better explore program states for
non-deterministic programs. Along with a better selection
of initial candidate invariant, this allowed us to start with
only 512 program states instead of 6400.

• Parallel RECORD – Multiple (by default, 2) instances
of RECORD with different seeds for PRNGs are run in
parallel, and the program states are then merged.

• Z3 Scopes – LOOPINVGEN creates a single subprocess
for Z3, and relies heavily on scopes to cache context
information, and minimize the size of queries.

• Unsolvability Detection – LOOPINVGEN immediately
terminates if ∃s : P (s) 6⇒ Q(s), i.e. the precondition does
not imply the postcondition. It also keeps track of known
program states, and terminates as soon as a state appears
to be a negative example (w.r.t. the given specification).

• Conflict Group Size [7] – Overriding PIE’s default size
of 16, LOOPINVGEN uses 64.

IV. CONCLUSION

We have described LOOPINVGEN, which uses a data-driven
approach to generate loop invariants that provably guarantee
the correctness of an implementation with respect to a given
specification. In contrast to existing techniques, LOOPINVGEN
(1) is not restricted to any specific logical theory, and (2) starts
with no initial features and learns them automatically on
demand. In essence, LOOPINVGEN reduces the problem of
loop invariant inference to a series of precondition inference
problems, and solves them using PIE, which uses a form of
program synthesis to learn features in a targeted manner.
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