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Abstract

We extend the data-driven approach to inferring precondi-
tions for code from a set of test executions. Prior work re-
quires a fixed set of features, atomic predicates that define
the search space of possible preconditions, to be specified
in advance. In contrast, we introduce a technique for on-
demand feature learning, which automatically expands the
search space of candidate preconditions in a targeted man-
ner as necessary. We have instantiated our approach in a
tool called PIE. In addition to making precondition infer-
ence more expressive, we show how to apply our feature-
learning technique to the setting of data-driven loop invari-
ant inference. We evaluate our approach by using PIE to in-
fer rich preconditions for black-box OCaml library functions
and using our loop-invariant inference algorithm as part of
an automatic program verifier for C++ programs.

Categories and Subject Descriptors D.2.1 [Software Engi-
neering]: Requirements/Specifications—Tools; D.2.4 [Soft-
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ware Engineering]: Software/Program Verification— Validation;

F3.1 [Theory of Computation]: Specifying and Verifying
and Reasoning about Programs—Invariants, Mechanical
verification, Specification techniques
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1.

In this work we extend the data-driven paradigm for pre-
condition inference: given a piece of code C along with a
predicate @, the goal is to produce a predicate P whose sat-
isfaction on entry to C is sufficient to ensure that ) holds
after C is executed. Data-driven approaches to precondition
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inference [21, 42] employ a machine learning algorithm to
separate a set of “good” test inputs (which cause @) to be
satisfied) from a set of “bad” ones (which cause @ to be fal-
sified). Therefore, these techniques are quite general: they
can infer candidate preconditions regardless of the complex-
ity of C and (), which must simply be executable.

A key limitation of data-driven precondition inference,
however, is the need to provide the learning algorithm with
a set of features, which are predicates over the inputs to C
(e.g., x > 0). The learner then searches for a boolean com-
bination of these features that separates the set G of “good”
inputs from the set B of “bad” inputs. Existing data-driven
precondition inference approaches [21, 42] require a fixed
set of features to be specified in advance. If these features
are not sufficient to separate G and B, the approaches must
either fail to produce a precondition, produce a precondition
that is known to be insufficient (satisfying some “bad” in-
puts), or produce a precondition that is known to be overly
strong (falsifying some “good” inputs).

In contrast, we show how to iteratively learn useful fea-
tures on demand as part of the precondition inference pro-
cess, thereby eliminating the problem of feature selection.
We have implemented our approach in a tool called PIE
(Precondition Inference Engine). Suppose that at some point
PIE has produced a set F' of features that is not sufficient to
separate GG and B. We observe that in this case there must be
at least one pair of tests that conflict: the tests have identical
valuations to the features in F' but one test is in G and the
other is in B. Therefore we have a clear criterion for fea-
ture learning: the goal is to learn a new feature to add to F'
that resolves a given set of conflicts. PIE employs a form of
search-based program synthesis [1, 50, 51] for this purpose,
since it can automatically synthesize rich expressions over
arbitrary data types. Once all conflicts are resolved in this
manner, the boolean learner is guaranteed to produce a pre-
condition that is both sufficient and necessary for the given
set of tests.

In addition to making data-driven precondition inference
less onerous and more expressive, our approach to feature
learning naturally applies to other forms of data-driven in-
variant inference that employ positive and negative exam-
ples. To demonstrate this, we have built a novel data-driven
algorithm for inferring provably correct loop invariants. Our



algorithm uses PIE as a subroutine to generate candidate in-
variants, thereby learning features on demand through con-
flict resolution. In contrast, all prior data-driven loop invari-
ant inference techniques require a fixed set or template of
features to be specified in advance [19, 20, 29, 32, 46, 48].

We have implemented PIE for OCaml as well as the
loop invariant inference engine based on PIE for C++. We
use these implementations to demonstrate and evaluate two
distinct uses cases for PIE.!

First, PIE can be used in the “black box” setting to aid
programmer understanding of third-party code. For exam-
ple, suppose a programmer wants to understand the condi-
tions under which a given library function throws an excep-
tion. PIE can automatically produce a likely precondition for
an exception to be thrown, which is guaranteed to be both
sufficient and necessary over the set of test inputs that were
considered. We evaluate this use case by inferring likely pre-
conditions for the functions in several widely used OCaml
libraries. The inferred preconditions match the English doc-
umentation in the vast majority of cases and in two cases
identify behaviors that are absent from the documentation.

Second, PIE-based loop invariant inference can be used
in the “white box” setting, in conjunction with the stan-
dard weakest precondition computation [11], to automati-
cally verify that a program meets its specification. We have
used our C++ implementation to verify benchmark programs
used in the evaluation of three recent approaches to loop in-
variant inference [13, 20, 46]. These programs require loop
invariants involving both linear and non-linear arithmetic as
well as operations on strings. The only prior techniques that
have demonstrated such generality require a fixed set or tem-
plate of features to be specified in advance.

The rest of the paper is structured as follows. Section 2
overviews PIE and our loop invariant inference engine in-
formally by example, and Section 3 describes these algo-
rithms precisely. Section 4 presents our experimental evalu-
ation. Section 5 compares with related work, and Section 6
concludes.

2. Overview

This section describes PIE through a running example.
The sub function in the String module of the OCaml
standard library takes a string s and two integers il and
i2 and returns a substring of the original one. A caller
of sub must provide appropriate arguments, or else an
Invalid_argument exception is raised. PIE can be used
to automatically infer a predicate that characterizes the set
of valid arguments.

Our OCaml implementation of precondition inference us-
ing PIE takes three inputs: a function f of type 'a -> 'b;a
set T of test inputs of type ’a, which can be generated using
any desired method; and a postcondition (), which is sim-

' Our code and full experimental results are available at
https://github.com/SaswatPadhi/PIE.
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Tests Featpres Set
il<0 :© 11>0 @ i2<@ : i2>0
("pie", 0, 0) F - F ° F * F G
("pie", 0, 1) F : F F T G
("pie", 1, 0) F T F F G
("pie", 1, 1) F T F T G
("pie", -1, 0) T F F F B
("pie", 1, -1) F T T F B
("pie", 1, 3) F T F T B
("pie", 2, 2) F T F T B

Figure 1: Data-driven precondition inference.

ply a function of type 'a -> ‘b result -> bool. A 'b
result either has the form Ok v where v is the result value
from the function or Exn e where e is the exception thrown
by the function. By executing f on each test input in 7" to ob-
tain a result and then executing () on each input-result pair,
T is partitioned into a set G of “good” inputs that cause )
to be satisfied and a set B of “bad” inputs that cause @ to
be falsified. Finally, PIE is given the sets G and B, with the
goal to produce a predicate that separates them.

In our running example, the function f is String.sub
and the postcondition () is the following function:

fun arg res ->
match res with
Exn (Invalid_argument _) -> false
| = -> true

As we show in Section 4, when given many random inputs
generated by the qcheck library?, PIE-based precondition
inference can automatically produce the following precon-
dition for String.sub to terminate normally:

il >= 0 && 12 >= 0 && il + i2 <= (length s)

Though in this running example the precondition is
conjunctive, PIE infers arbitrary conjunctive normal form
(CNF) formulas. For example, if the postcondition above is
negated, then PIE will produce this complementary condi-
tion for when an Invalid_argument exception is raised:

il <0 || i2 <0 || il + i2 > (length s)

2.1 Data-Driven Precondition Inference

This subsection reviews the data-driven approach to precon-
dition inference [21, 42] in the context of PIE. For purposes
of our running example, assume that we are given only the
eight test inputs for sub that are listed in the first column
of Figure 1. The induced set G of “good” inputs that cause
String.sub to terminate normally and set B of “bad” in-
puts that cause sub to raise an exception are shown in the
last column of the figure.

Like prior data-driven approaches, PIE separates G and
B by reduction to the problem of learning a boolean formula

Zhttps://github.com/c- cube/qcheck
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from examples [21, 42]. This reduction requires a set of
features, which are predicates on the program inputs that
will be used as building blocks for the inferred precondition.
As we will see later, PIE’s key innovation is the ability
to automatically learn features on demand, but PIE also
accepts an optional initial set of features to use.

Suppose that PIE is given the four features shown along
the top of Figure 1. Then each test input induces a feature
vector of boolean values that results from evaluating each
feature on that input. For example, the first test induces the
feature vector <F,F,F, F>. Each feature vector is now inter-
preted as an assignment to a set of four boolean variables,
and the goal is to learn a propositional formula over these
variables that satisfies all feature vectors from G and falsi-
fies all feature vectors from B.

There are many algorithms for learning boolean formulas
by example. PIE uses a simple but effective probably ap-
proximately correct (PAC) algorithm that can learn an arbi-
trary conjunctive normal form (CNF) formula and is biased
toward small formulas [31]. The resulting precondition is
guaranteed to be both sufficient and necessary for the given
test inputs, but there are no guarantees for other inputs.

2.2 Feature Learning via Program Synthesis

At this point in our running example, we have a problem:
there is no boolean function on the current set of features
that is consistent with the given examples! This situation
occurs exactly when two test inputs conflict: they induce
identical feature vectors, but one test is in G while the other
is in B. For example, in Figure 1 the tests ("pie",1,1) and
("pie",1,3) conflict; therefore no boolean function over
the given features can distinguish between them.

Prior data-driven approaches to precondition inference
require a fixed set of features to be specified in advance.
Therefore, whenever two tests conflict they must produce
a precondition that violates at least one test. The approach
of Sankaranarayanan et al. [42] learns a decision tree using
the ID3 algorithm [40], which minimizes the total number of
misclassified tests. The approach of Gehr et al. [21] strives
to produce sufficient preconditions and so returns a precon-
dition that falsifies all of the “bad” tests while minimizing
the total number of misclassified “good” tests.

In our running example, both prior approaches will pro-
duce a predicate equivalent to the following one, which mis-
classifies one “good” test:

(i1l < 0) && !(i2 < 0)
& !'((il > 0) & (i2 > 0))

This precondition captures the actual lower-bound require-
ments on il and i2. However, it includes an upper-bound
requirement that is both overly restrictive, requiring at least
one of i1 and i2 to be zero, and insufficient (for some unob-
served inputs), since it is satisfied by erroneous inputs such
as ("pie",0,5). Further, using more tests does not help.
On a test suite with full coverage of the possible “good”
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and “bad” feature vectors, an approach that falsifies all “bad”
tests must require both i1 and 12 to be zero, obtaining suf-
ficiency but ruling out almost all “good” inputs. The ID3
algorithm will produce a decision tree that is larger than the
original one, due to the need for more case splits over the
features, and this tree will be either overly restrictive, insuf-
ficient, or both.

In contrast to these approaches, we have developed a form
of automatic feature learning, which augments the set of
features in a targeted manner on demand. The key idea is to
leverage the fact that we have a clear criterion for selecting
new features — they must resolve conflicts. Therefore, PIE
first generates new features to resolve any conflicts, and it
then uses the approach described in Section 2.1 to produce a
precondition that is consistent with all tests.

Let a conflict group be a set of tests that induce the same
feature vector and that participate in a conflict (i.e., at least
one test is in G and one is in B). PIE’s feature learner uses a
form of search-based program synthesis [1, 16] to generate
a feature that resolves all conflicts in a given conflict group.
Given a set of constants and operations for each type of data
in the tests, the feature learner enumerates candidate boolean
expressions in order of increasing size until it finds one that
separates the “good” and “bad” tests in the given conflict
group. The feature learner is invoked repeatedly until all
conflicts are resolved.

In Figure 1, three tests induce the same feature vector
and participate in a conflict. Therefore, the feature learner
is given these three input-output examples: ( ("pie",1,1),
T), (("pie",1,3), F),and (("pie",2,2), F). Various
predicates are consistent with these examples, including the
“right” one i1 + i2 <= (length s) and less useful ones
like il + i2 != 4. However, overly specific predicates are
less likely to resolve a conflict group that is sufficiently large;
the small conflict group in our example is due to the use
of only eight test inputs. Further, existing synthesis engines
bias against such predicates by assigning constants a larger
“size” than variables [1].

PIE with feature learning is strongly convergent: if there
exists a predicate that separates G and B and is expressible
in terms of the constants and operations given to the feature
learner, then PIE will eventually (ignoring resource limita-
tions) find such a predicate. PIE’s search space is limited
to predicates that are expressible in the “grammar” given
to the feature learner. However, each type typically has a
standard set of associated operations, which can be provided
once and reused across many invocations of PIE. For each
such invocation, feature learning automatically searches an
unbounded space of expressions in order to produce targeted
features. For example, the feature il + i2 <= (length
s) for String. sub in our running example is automatically
constructed from the operations + and <= on integers and
length on strings, obviating the need for users to manually
craft this feature in advance.



string sub(string s, int il, int i2) {
assume(il >= 0 && i2 >= 0 &&
i1+i2 <= s.length());
int i = i1;
string r = "";
while (i < il1+i2) {
assert(i >= 0 & 1 < s.length());

r=r+ s.at(i);
i=1+1;

}

return r;

Figure 2: A C++ implementation of sub.

Our approach to feature learning could itself be used to
perform precondition inference in place of PIE, given all
tests rather than only those that participate in a conflict.
However, we demonstrate in Section 4 that our separation
of feature learning and boolean learning is critical for scal-
ability. The search space for feature learning is exponential
in the maximum feature size, so attempting to synthesize en-
tire preconditions can quickly hit resource limitations. PIE
avoids this problem by decomposing precondition inference
into two subproblems: generating rich features over arbitrary
data types and generating a rich boolean structure over a
fixed set of black-box features.

2.3 Feature Learning for Loop Invariant Inference

Our approach to feature learning also applies to other forms
of data-driven invariant inference that employ positive and
negative examples, and hence can have conflicts. To illus-
trate this, we have built a novel algorithm called LOOP-
INVGEN for inferring loop invariants that are sufficient to
prove that a program meets its specification. The algorithm
employs PIE as a subroutine, thereby learning features on
demand as described above. In contrast, all prior data-driven
loop invariant inference techniques require a fixed set or
template of features to be specified in advance [19, 20, 29,
32, 46, 48].

To continue our running example, suppose that we have
inferred a likely precondition for the sub function to exe-
cute without error and want to verify its correctness for the
C++ implementation of sub shown in Figure 2.3 As is stan-
dard, we use the function assume (P) to encode the precon-
dition; executions that do not satisfy P are silently ignored.
We would like to automatically prove that the assertion in-
side the while loop never fails (which implies that the subse-
quent access s.at (1) is within bounds). However, doing so
requires an appropriate loop invariant to be inferred, which
involves both integer and string operations. To our knowl-
edge, the only previous technique that has been demon-

3 Note that + is overloaded as both addition and string concatenation in C++.
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strated to infer such invariants employs a random search over
a fixed set of features [46].

In contrast, our algorithm LOOPINVGEN can infer an ap-
propriate loop invariant without being given any features as
input. The algorithm is inspired by the HOLA loop invariant
inference engine, a purely static analysis that employs log-
ical abduction via quantifier elimination to generate candi-
date invariants [13]. Our approach is similar but does not re-
quire the logic of invariants to support quantifier elimination
and instead leverages PIE to generate candidates. HOLA’s
abduction engine generates multiple candidates, and HOLA
performs a backtracking search over them. PIE instead gen-
erates a single precondition, but we show how to iteratively
augment the set of tests given to PIE in order to refine its
result. We have implemented LOOPINVGEN for C++ pro-
grams.

The LOOPINVGEN algorithm has three main compo-
nents. First, we build a program verifier V' for loop-free
programs in the standard way: given a piece of code C' along
with a precondition P and postcondition ), V generates
the formula P = WP(C, Q), where WP denotes the weak-
est precondition [11]. The verifier then checks validity of
this formula by querying an SMT solver that supports the
necessary logical theories, which either indicates validity or
provides a counterexample.

Second, we use PIE and the verifier V' to build an algo-
rithm VPREGEN for generating provably sufficient precon-
ditions for loop-free programs, via counterexample-driven
refinement [5]. Given code C, a postcondition (), and test
sets G and B, VPREGEN invokes PIE on GG and B to gen-
erate a candidate precondition P. If the verifier V' can prove
the sufficiency of P for C' and @, then we are done. Oth-
erwise, the counterexample from the verifier is incorporated
as a new test in the set B, and the process iterates. PIE’s
feature learning automatically expands the search space of
preconditions whenever a new test creates a conflict.

Finally, the LOOPINVGEN algorithm iteratively invokes
VPREGEN to produce candidate loop invariants until it finds
one that is sufficient to verify the given program. We illus-
trate LOOPINVGEN in our running example, where the in-
ferred loop invariant I (4,41, 42,7, s) must satisfy the follow-
ing three properties:

1. The invariant should hold when the loop is first entered:
(’il >0At9 > 0N +19 < s.length()
ANi=ii Ar="“"= I(i,il,ig,r,s)
2. The invariant should be inductive:

I(i iy, t9,7, 8)NE < i14i9 = I(i+1,41, 02, 7+s.at(i), s)

3. The invariant should be strong enough to prove the asser-
tion:

I(i,i1,i9,7,8) Ni < i1 +ia = 0 <1< s.length()



Our example involves both linear arithmetic and string op-
erations, so the program verifier V' must use an SMT solver
that supports both theories, such as Z3-Str2 [52] or CVC4
[35].

To generate an invariant satisfying the above properties,
LOOPINVGEN first asks VPREGEN to find a precondition
to ensure that the assertion will not fail in the following
program, which represents the third constraint above:

assume(i < il + i2);
assert(0 <= 1 & 1 < s.length());

Given a sufficiently large set of test inputs, VPREGEN gen-
erates the following precondition, which is simply a restate-
ment of the assertion itself:

0 <=1 && 1 < s.length()

While this candidate invariant is guaranteed to satisfy
the third constraint, an SMT solver can show that it is not
inductive. We therefore use VPREGEN again to iteratively
strengthen the candidate invariant until it is inductive. For
example, in the first iteration, we ask VPREGEN to infer a
precondition to ensure that the assertion will not fail in the
following program:

assume(0 <= 1 && i < s.length());
assume(i < il + i2);

r r+ s.at(i);

i = 1i+1;

assert(0 <= 1 && i < s.length());

This program corresponds to the second constraint above,
but with I replaced by our current candidate invariant.

VPREGEN generates the precondition i1+i2 <= s.length()

for this program, which we conjoin to the current candidate
invariant to obtain a new candidate invariant:

0 <=1 && i < s.length() && 11+i2 <= s.length()

This candidate is inductive, so the iteration stops.

Finally, we ask the verifier if our candidate satisfies the
first constraint above. In this case it does, so we have found
a valid loop invariant and thereby proven that the code’s
assertion will never fail. If instead the verifier provides a
counterexample, then we incorporate this as a new test input
and restart the entire process of finding a loop invariant.

3. Algorithms

In this section we describe our data-driven precondition in-
ference and loop invariant inference algorithms in more de-
tail.

3.1 Precondition Inference

Figure 3 presents the algorithm for precondition gener-
ation using PIE, which we call PREGEN. We are given a
code snippet C, which is assumed not to make any internal
non-deterministic choices, and a postcondition @, such as
an assertion. We are also given a set of test inputs 7" for C,
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PREGEN(C": Code, Q: Predicate, T": Tests) : Predicate
Returns: A precondition that is consistent with all tests in T’

1: Tests G, B := PARTITIONTESTS(C,Q,T")
2: return PIE(G,B)

Figure 3: Precondition generation.

PIE(G: Tests, B: Tests) : Predicate
Returns: A predicate P such that P(t) for all t € G and
—P(t) forallt € B

1: Features F := ()

2: repeat

3:  FeatureVectors V1 := CREATEFV(F,G)
4 FeatureVectors V'~ := CREATEFV(F',B)
5:  Conflict X := GETCONFLICT(V',V~, G, B)
6: if X # None then

7: F := F U FEATURELEARN(X)

8: endif

9: until X = None

10: ¢ := BOOLLEARN(V T,V ™)

11: return SUBSTITUTE(F, ¢)

Figure 4: The PIE algorithm.

which can be generated by any means, for example a fuzzer,
a symbolic execution engine, or manually written unit tests.
The goal is to infer a precondition P such that the execution
of C results in a state satisfying ) if and only if it begins
from a state satisfying P. In other words, we would like to
infer the weakest predicate P that satisfies the Hoare triple
{P}C{Q}. Our algorithm guarantees that P will be both
sufficient and necessary on the given set of tests 7' but makes
no guarantees for other inputs.

The function PARTITIONTESTS in Figure 3 executes the
tests in 7" in order to partition them into a sequence G of
“good” tests, which cause C to terminate in a state that sat-
isfies @), and a sequence B of “bad” tests, which cause C to
terminate in a state that falsifies ) (line 1). The precondition
is then obtained by invoking PIE, which is discussed next.

Figure 4 describes the overall structure of PIE, which
returns a predicate that is consistent with the given set of
tests. The initial set F' of features is empty, though our
implementation optionally accepts an initial set of features
from the user (not shown in the figure). For example, such
features could be generated based on the types of the input
data, the branch conditions in the code, or by leveraging
some knowledge of the domain.

Regardless, PIE then iteratively performs the loop on
lines 2-9. First it creates a feature vector for each test in G
and B (lines 3 and 4). The i*" element of the sequence V+
is a sequence that stores the valuation of the features on the
it test in G. More formally,

V1 = CREATEFV(F,G) <= Vi,j.(V"); = F;(G;)



Here we use the notation Sy to denote the k' element
of the sequence .S, and F};(G;) denotes the boolean result
of evaluating feature F; on test G;. V'~ is created in an
analogous manner given the set B.

We say that a feature vector v is a conflict if it appears in
both V* and V—, ie. 3i,5.V," = V;” = v. The function
GETCONFLICT returns None if there are no conflicts. Oth-
erwise it selects one conflicting feature vector v and returns
a pair of sets X = (X, X 7), where X is a subset of G
whose associated feature vector is v and X ~ is a subset of B
whose associated feature vector is v. Next PIE invokes the
feature learner on X, which uses a form of program synthe-
sis to produce a new feature f such that V¢ € X*+.f(t) and
YVt € X~ .~ f(t). This new feature is added to the set F of
features, thus resolving the conflict.

The above process iterates, identifying and resolving con-
flicts until there are no more. PIE then invokes the function
BOOLLEARN, which learns a propositional formula ¢ over
|F| variables such that Vv € V*.¢(v) and Vv € V™ .=¢(v).
Finally, the precondition is created by substituting each fea-
ture for its corresponding boolean variable in ¢.

Discussion Before describing the algorithms for feature
learning and boolean learning, we note some important as-
pects of the overall algorithm. First, like prior data-driven
approaches, PREGEN and PIE are very general. The only re-
quirement on the code C in Figure 3 is that it be executable,
in order to partition 7" into the sets G’ and B. The code it-
self is not even an argument to the function PIE. Therefore,
PREGEN can infer preconditions for any code, regardless of
how complex it is. For example, the code can use idioms that
are hard for automated constraint solvers to analyze, such
as non-linear arithmetic, intricate heap structures with com-
plex sharing patterns, reflection, and native code. Indeed, the
source code itself need not even be available. The postcon-
dition @ similarly must simply be executable and so can be
arbitrarily complex.

Second, PIE can be viewed as a hybrid of two forms
of precondition inference. Prior data-driven approaches to
precondition inference [21, 42] perform boolean learning
but lack feature learning, which limits their expressiveness
and accuracy. On the other hand, a feature learner based
on program synthesis [1, 50, 51] can itself be used as a
precondition inference engine without boolean learning, but
the search space grows exponentially with the size of the
required precondition. PIE uses feature learning only to
resolve conflicts, leveraging the ability of program synthesis
to generate expressive features over arbitrary data types,
and then uses boolean learning to scalably infer a concise
boolean structure over these features.

Due to this hybrid nature of PIE, a key parameter in the
algorithm is the maximum number c of conflicting tests to
allow in the conflict group X at line 5 in Figure 4. If the
conflict groups are too large, then too much burden is placed
on the feature learner, which limits scalability. For example,
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FEATURELEARN(X T: Tests, X ~: Tests) : Predicate
Returns: A feature f such that f(¢) for all £ € X and
—f(t) forallt € X~

1: Operations O := GETOPERATIONS()

2: Integeri:=1

3: loop

4:  Features F' := FEATURESOFSIZE(i, O)

5. if3fe F(Vie XT.f(t) AVt e X .~f(t)) then
6 return f

7 end if

8: i:=1+1

9: end loop

Figure 5: The feature learning algorithm.

a degenerate case is when the set of features is empty, in
which case all tests induce the empty feature vector and
are in conflict. Therefore, if the set of conflicting tests that
induce the same feature vector has a size greater than c, we
choose a random subset of size c to provide to the feature
learner. We empirically evaluate different values for ¢ in our
experiments in Section 4.

Feature Learning Figure 5 describes our approach to fea-
ture learning. The algorithm is a simplified version of the Es-
cher program synthesis tool [1], which produces functional
programs from examples. Like Escher, we require a set of
operations for each type of input data, which are used as
building blocks for synthesized features. By default, FEA-
TURELEARN includes operations for primitive types as well
as for lists. For example, integer operations include 0 (a
nullary operation), +, and <=, while list operations include
[1, ::, and length. Users can easily add their own opera-
tions, for these as well as other types of data.

Given this set of operations, FEATURELEARN simply
enumerates all possible features in order of the size of their
abstract syntax trees. Before generating features of size ¢ +1,
it checks whether any feature of size ¢ completely separates
the tests in X1 and X —; if so, that feature is returned. The
process can fail to find an appropriate feature, either because
no such feature over the given operations exists or because
resource limitations are reached; either way, this causes the
PIE algorithm to fail.

Despite the simplicity of this algorithm, it works well in
practice, as we show in Section 4. Enumerative synthesis is
a good match for learning features, since it biases toward
small features, which are likely to be more general than
large features and so helps to prevent against overfitting.
Further, the search space is significantly smaller than that of
traditional program synthesis tasks, since features are simple
expressions rather than arbitrary programs. For example, our
algorithm does not attempt to infer control structures such as
conditionals, loops, and recursion, which is a technical focus
of much program-synthesis research [1, 16].



BOOLLEARN(Vt: Feature Vectors, V ~: Feature Vectors) :
Boolean Formula

Returns: A formula ¢ such that ¢(v) for all v € V' and
—¢(v) forallv € V-

1: Integer n := size of each feature vectorin V™ and V—
2: Integer k :=1

3: loop

4:  Clauses C' := ALLCLAUSESUPTOSIZE(k, n)

5 C := FILTERINCONSISTENTCLAUSES(C, V1)

6: C := GREEDYSETCOVER(C, V™)

7. if C # None then
8

9

return C
end if
10 k:=k+1
11: end loop

Figure 6: The boolean function learning algorithm.

Boolean Function Learning We employ a standard algo-
rithm for learning a small CNF formula that is consistent
with a given set of boolean feature vectors [31]; it is de-
scribed in Figure 6. Recall that a CNF formula is a conjunc-
tion of clauses, each of which is a disjunction of literals.
A literal is either a propositional variable or its negation.
Our algorithm returns a CNF formula over a set x1,...,z,
of propositional variables, where n is the size of each fea-
ture vector (line 1). The algorithm first attempts to pro-
duce a 1-CNF formula (i.e., a conjunction), and it incre-
ments the maximum clause size k iteratively until a formula
is found that is consistent with all feature vectors. Since
BOOLLEARN is only invoked once all conflicts have been
removed (see Figure 4), this process is guaranteed to suc-
ceed eventually.

Given a particular value of k, the learning algorithm first
generates a set C' of all clauses of size k£ or smaller over
Z1,...,%T, (line 4), implicitly representing the conjunction
of these clauses. In line 5, all clauses that are inconsistent
with at least one of the “good” feature vectors (i.e., the vec-
tors in V') are removed from C. A clause c is inconsistent
with a “good” feature vector v if v falsifies c:

V1 <i<n.(z; € c=v; =false)A\(—x; € ¢ = v; = true)

After line 5, C represents the strongest k-CNF formula that
is consistent with all “good” feature vectors.

Finally, line 6 weakens C' while still falsifying all of the
“bad” feature vectors (i.e., the vectors in V' 7). In particular,
the goal is to identify a minimal subset C’ of C' where for
each v € V—, there exists ¢ € C’ such that v falsifies c. This
problem is equivalent to the classic minimum set cover prob-
lem, which is NP-complete. Therefore, our GREEDYSET-
COVER function on line 6 uses a standard heuristic for that
problem, iteratively selecting the clause that is falsified by
the most “bad” feature vectors that remain, until all such fea-
ture vectors are “covered.” This process will fail to cover all

48

VPREGEN(C: Code, QQ: Predicate, GG: Tests) : Predicate
Returns: A precondition P such that P(t) for all ¢ in G and
{P}C{Q} holds

1: Tests B =0

2: repeat

3 P :=PIE(G,B)

4:  t:=VERIFY(P,C,Q)
5. B:=B Ut}

6: until £ = None

7: return P

Figure 7: Verified precondition generation for loop-free
code.

“bad” feature vectors if there is no k-CNF formula consistent
with V1 and V —, in which case k is incremented; otherwise
the resulting set C' is returned as our CNF formula.

Because the boolean learner treats features as black
boxes, this algorithm is unaffected by their sizes. Rather,
the search space is O(n*), where n is the number of fea-
tures and & is the maximum clause size, and in practice k
is a small constant. Though we have found this algorithm to
work well in practice, there are many other algorithms for
learning boolean functions from examples. As long as they
can learn arbitrary boolean formulas, then we expect that
they would also suffice for our purposes.

Properties As described above, the precondition returned
by PIE is guaranteed to be both necessary and sufficient for
the given set of test inputs. Furthermore, PIE is strongly con-
vergent: if there exists a predicate that separates GG and B and
is expressible in terms of the constants and operations given
to the feature learner, then PIE will eventually (ignoring re-
source limitations) find and return such a predicate.

To see why PIE is strongly convergent, note that FEA-
TURELEARN (Figure 5) performs an exhaustive enumera-
tion of possible features. By assumption a predicate that sep-
arates GG and B is expressible in the language of the feature
learner, and that predicate also separates any sets X+ and
X~ of conflicting tests, since they are respectively subsets
of G and B. Therefore each call to FEATURELEARN on line
7 in Figure 4 will eventually succeed, reducing the number
of conflicting tests and ensuring that the loop at line 2 even-
tually terminates. At that point, there are no more conflicts,
so there is some CNF formula over the features in F' that
separates G and B, and the boolean learner will eventually
find it.

3.2 Loop Invariant Inference

As described in Section 2.3, our loop invariant infer-
ence engine relies on an algorithm VPREGEN that gen-
erates provably sufficient preconditions for loop-free code.
The VPREGEN algorithm is shown in Figure 7. In the con-
text of loop invariant inference (see below), VPREGEN will
always be passed a set of “good” tests to use and will start



LOOPINVGEN(C: Code, T": Tests) : Predicate
Returns: A loop invariant that is sufficient to verify that C’s
assertion never fails.

Require: C' = assume P;while E {C}};assert Q)
1: G := LOOPHEADSTATES(C, T)

2: loop

3 I := VPREGEN( [assume —E], Q, G)

4:  whilenot {I A E}C1{I} do

5: I’ := VPREGEN( [assume I A E; 1], I, G)
6: I=INT

7 end while

8 t := VALID(P = 1)

9:  if t = None then

10: return /

11:  else

12: G := G U LOOPHEADSTATES(C, {t})
13:  endif

14: end loop

Figure 8: Loop invariant inference using PIE.

with no “bad” tests, so we specialize the algorithm to that
setting. The VPREGEN algorithm assumes the existence of
a verifier for loop-free programs. If the verifier can prove the
sufficiency of a candidate precondition P generated by PIE
(lines 3-4), it returns None and we are done. Otherwise the
verifier returns a counterexample ¢, which has the property
that P(t) is true but executing C on ¢ ends in a state that fal-
sifies Q. Therefore we add ¢ to the set B of “bad” tests and
iterate.

The LOOPINVGEN algorithm for loop invariant inference
is shown in Figure 8. For simplicity, we restrict the presen-
tation to code snippets of the form

C = assume P;while F {C} };assert Q

where C; is loop-free. Our implementation also handles
code with multiple and nested loops, by iteratively inferring
invariants for each loop encountered in a backward traversal
of the program’s control-flow graph.

The goal of LOOPINVGEN is to infer a loop invari-
ant I which is sufficient to prove that the Hoare triple
{P}(while E{C;}){Q} is valid. In other words, we must
find an invariant [ that satisfies the following three con-
straints:

P = 1
{UnE} G {1}
IN-E = @

Given a test suite 7" for C', LOOPINVGEN first generates
a set of tests for the loop by logging the program state every
time the loop head is reached (line 1). In other words, if
Z denotes the set of program variables then we execute the
following instrumented version of C' on each test in 7":

assume P;log Z;while E {C;log &'}; assert @
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If the Hoare triple { P} (while E{C}}){Q} is valid, then all
test executions are guaranteed to pass the assertion, so all
logged program states will belong to the set G of passing
tests. If a test fails the assertion then no valid loop invariant
exists so we abort (not shown in the figure).

With this new set G of tests, LOOPINVGEN first generates
a candidate invariant that meets the third constraint above
by invoking VPREGEN on line 3. The inner loop (lines 4-
7) then strengthens I until the second constraint is met. If
the generated candidate also satisfies the first constraint (line
8), then we have found an invariant. Otherwise we obtain
a counterexample ¢ satisfying P A —I, which we use to
collect new program states as additional tests (line 12), and
the process iterates. The verifier for loop-free code is used
on lines 3 (inside VPREGEN), 4 (to check the Hoare triple),
and 5 (inside VPREGEN), and the underlying SMT solver is
used on line 8 (the validity check).

We note the interplay of strengthening and weakening
in the LOOPINVGEN algorithm. Each iteration of the inner
loop strengthens the candidate invariant until it is inductive.
However, each iteration of the outer loop uses a larger set
G of passing tests. Because PIE is guaranteed to return a
precondition that is consistent with all tests, the larger set
G has the effect of weakening the candidate invariant. In
other words, candidates get strengthened, but if they become
stronger than P in the process then they will be weakened in
the next iteration of the outer loop.

Properties Both the VPREGEN and LOOPINVGEN al-
gorithms are sound: VPREGEN(C, ), G) returns a pre-
condition P such that {P}C{Q} holds, and LOOPIN-
VGEN(C, T') returns a loop invariant [/ that is sufficient to
prove that {P}(while E {C;}){Q} holds, where C' =
assume P;while E {C};assert ). However, neither al-
gorithm is guaranteed to return the weakest such predicate.

VPREGEN(C, Q, G) is strongly convergent: if there exists
a precondition P that is expressible in the language of the
feature learner such that {P}C{Q} holds and P(t) holds
for each ¢t € GG, then VPREGEN will eventually find such a
precondition.

To see why, first note that by assumption each test in G
satisfies P, and since { P}C{Q} holds, each test that will be
put in B at line 5 in Figure 7 falsifies P (since each such
test causes () to be falsified). Therefore P is a separator for
G and B, so each call to PIE at line 3 terminates due to the
strong convergence result described earlier. Suppose P has
size s. Then each call to PIE from VPREGEN will generate
features of size at most s, since P itself is a valid separator
for any set of conflicts. Further, each call to PIE produces
a logically distinct precondition candidate, since each call
includes a new test in B that is inconsistent with the previous
candidate. Since the feature learner has a finite number of
operations for each type of data, there are a finite number
of features of size at most s and so also a finite number of
logically distinct boolean functions in terms of such features.



Hence eventually P or another sufficient precondition will
be found.

LOOPINVGEN is not strongly convergent: it can fail to
terminate even when an expressible loop invariant exists.
First, the iterative strengthening loop (lines 4-7 of Figure 8)
can generate a VPREGEN query that has no expressible so-
lution, causing VPREGEN to diverge. Second, an adversarial
sequence of counterexamples from the SMT solver (line 9 of
Figure 8) can cause LOOPINVGEN'’s outer loop to diverge.
Nonetheless, our experimental results below indicate that the
algorithm performs well in practice.

4. Evaluation

We have evaluated PIE’s ability to infer preconditions for
black-box OCaml functions and LOOPINVGEN’s ability to
infer sufficient loop invariants for verifying C++ programs.

4.1 Precondition Inference

Experimental Setup We have implemented the PREGEN
algorithm described in Figure 3 in OCaml. We use PREGEN
to infer preconditions for all of the first-order functions in
three OCaml modules: List and String from the standard
library, and BatAv1Tree from the widely used batteries
library*. Our test generator and feature learner do not han-
dle higher-order functions. For each function, we generate
preconditions under which it raises an exception. Further,
for functions that return a list, string, or tree, we generate
preconditions under which the result value is empty when it
returns normally. Similarly, for functions that return an in-
teger (boolean) we generate preconditions under which the
result value is 0 (false) when the function returns normally.
A recent study finds that roughly 75% of manually written
specifications are predicates like these, which relate to the
presence or absence of data [43].

For feature learning we use a simplified version of the
Escher program synthesis tool [1] that follows the algo-
rithm described in Figure 5. Escher already supports op-
erations on primitive types and lists; we augment it with
operations for strings (e.g., get, has, sub) and AVL trees
(e.g., Left_branch, right_branch, height). For the set T’
of tests, we generate random inputs of the right type using
the qcheck OCaml library. Analogous to the small scope
hypothesis [28], which says that “small inputs” can expose
a high proportion of program errors, we find that generat-
ing many random tests over a small domain exposes a wide
range of program behaviors. For our tests we generate ran-
dom integers in the range [—4, 4], lists of length at most 5,
trees of height at most 5 and strings of length at most 12.

In total we attempt to infer preconditions for 101 function-
postcondition pairs. Each attempt starts with no initial fea-
tures and is allowed to run for at most one hour and use up
to 8GB of memory. Two key parameters to our algorithm are
the number of tests to use and the maximum size of conflict

4http://batteries.forge.ocamlcore.org
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Table 1: A sample of inferred preconditions for OCaml
library functions.

Case ‘ Postcondition ‘ Learned Features
String module functions
. throws exception ‘ 3
set(s,,c) R R
(1 < 0)V (len(s) <1)
throws exception ‘ 3

b(s,i1,i
sub(s, i, i2) (iy < 0)V (iz < 0)

V (i1 > len(s) —i2)

, result = 0 ‘ 2
index(s,c) |-
has(get(s, 0),c)
throws exception ‘ 4

index_from(s,z,c)

(1<0)V(z>1len(s)) V
— has(sub(s, i, len(s) — i), c)

List module functions
hrows i 2
nth(l, my | trowsexcepon [ 2
(0> n)V (n>1len(l))
empty(result) ‘ 2

d(ly, 1
append(f, [2) empty(l1) A empty(l2)

BatAv1Tree module functions

create
(t1, v, t2)

concat(ty, ta2)

empty(t1) A empty(t2)

groups to provide the feature learner. Empirically we have
found 6400 tests and conflict groups of maximum size 16 to
provide good results (see below for an evaluation of other
values of these parameters).

Results Under the configuration described above, PRE-
GEN generates correct preconditions in 87 out of 101 cases.
By “correct” we mean that the precondition fully matches
the English documentation, and possibly captures actual be-
haviors not reflected in that documentation. The latter hap-
pens for two BatAv1Tree functions: the documentation does
not mention that split_leftmost and split_rightmost
will raise an exception when passed an empty tree.

Table 1 shows some of the more interesting preconditions
that PREGEN inferred, along with the number of synthesized
features for each. For example, it infers an accurate precon-
dition for String.index_from(s,%,c), which returns the
index of the first occurrence of character c in string s after
position ¢, through a rich boolean combination of arithmetic
and string functions. As another example, PREGEN auto-
matically discovers the definition of a balanced tree, since
BatAvlTree.create throws an exception if the resulting
tree would not be balanced. Prior approaches to precondi-
tion inference [21, 42] can only capture these preconditions
if they are provided with exactly the right features (e.g.,
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Figure 9: Comparison of PIE configurations. The top plot
shows the effect of different numbers of tests. The bottom
plot shows the effect of different conflict group sizes.

height(¢1) > (height(t2) + 1)) in advance, while PRE-
GEN learns the necessary features on demand.

The 14 cases that either failed due to time or memory lim-
its or that produce an incorrect or incomplete precondition
were of three main types. The majority (10 out of 14) require
universally quantified features, which are not supported by
our feature learner. For example, List.flatten (/) returns
an empty list when each of the inner lists of [ is empty. In
a few cases the inferred precondition is incomplete due to
our use of small integers as test inputs. For example, we do
not infer that String.make (7, c) throws an exception if ¢ is
greater than Sys.max_string_length. Finally, a few cases
produce erroneous specifications for list functions that em-
ploy physical equality, such as List.memq. Our tests for lists
only use primitives as elements, so they cannot distinguish
physical from structural equality.

Configuration Parameter Sensitivity We also evaluated
PIE’s sensitivity to the number of tests and the maximum
conflict group size. The top plot in Figure 9 shows the re-
sults with varied numbers of tests (and conflict group size
of 16). In general, the more tests we use, the more correct
our results. However, with 12,800 tests we incur one addi-
tional case that hits resource limits due to the extra overhead
involved.
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Table 2: Comparison of PIE with an approach that uses
eager feature learning. The size of a feature is the number
of nodes in its abstract syntax tree. Each Q; indicates the 7*"
quartile, computed independently for each column.

Size of Features |......omber of Features

EAGER PIE
Min 2 13 1
Q1 3 29.25 1
Q2 4 55 1
Qs 5.25 541.50 2
Max 13 18051 5

Mean 4.54 1611.80 1.50

SDev 2.65 4055.50 0.92

The bottom plot in Figure 9 shows the results with var-
ied conflict group sizes (and 6400 tests). On the one hand,
we can give the feature learner only a single pair of con-
flicting tests at a time. As the figure shows, this leads to
more cases hitting resource limits and producing incorrect
results versus a conflict group size of 16, due to the higher
likelihood of synthesizing overly specific features. On the
other hand, we can give the feature learner all conflicting
tests at once. When starting with no initial features, all tests
are in conflict, so this strategy requires the feature learner
to synthesize the entire precondition. As the figure shows,
this approach hits resource limitations more often versus a
conflict group size of 16. For example, this approach fails
to generate the preconditions for String.index_from and
BatAvlTree.create shown in Table 1. Further, in the cases
that do succeed, the average running time and memory con-
sumption are 11.7 second and 309 MB, as compared to only
1.8 seconds and 66 MB when the conflict group size is 16.

Comparison With Eager Feature Learning PIE generates
features lazily as necessary to resolve conflicts. An alterna-
tive approach is to use Escher up front to eagerly generate
every feature for a given program up to some maximum fea-
ture size s. These features can then simply all be passed to
the boolean learner. To evaluate this approach, we instru-
mented PIE to count the number of candidate features that
were generated by Escher each time it was called.’ For each
call to PIE, the maximum such number across all calls to
Escher is a lower bound, and therefore a best-case scenario,
for the number of features that would need to be passed to
the boolean learner in an eager approach. It’s a lower bound
for two reasons. First, we are assuming that the user can cor-
rectly guess the maximum size s of features to generate in
order to produce a precondition that separates the “good”
and “bad” tests. Second, Escher stops generating features as
soon as it finds one that resolves the given conflicts, so in

5 All candidates generated by Escher are both type-correct and exception-
free, i.e. they do not throw exceptions on any test inputs.



general there will be many features of size s that are not
counted.

Table 2 shows the results for the 52 cases in our exper-
iment above where PIE produces a correct answer and at
least one feature is generated. Notably, the minimum num-
ber of features generated in the eager approach (13) is more
than double the maximum number of features selected in our
approach (5). Nonetheless, for functions that require only
simple preconditions, eager feature learning is reasonably
practical. For example, 25% of the preconditions (Min to Q4
in the table) require 29 or fewer features. However, the num-
ber of features generated by eager feature learning grows ex-
ponentially with their maximum size. For example, the top
25% of preconditions (from Q3 to Max) require a minimum
of 541 features to be generated and a maximum of more than
18, 000. Since boolean learning is in general super-linear in
the number n of features (the algorithm we use is O(n*)
where k is the maximum clause size), we expect an eager
approach to hit resource limits as the preconditions become
more complex.

4.2 Loop Invariants for C++ Code

We have implemented the loop invariant inference proce-
dure described in Figure 8 for C++ code as a Clang tool®.
As mentioned earlier, our implementation supports multiple
and nested loops. We have also implemented a verifier for
loop-free programs using the CVC4 [35] and Z3-Str2 [52]
SMT solvers, which support several logical theories includ-
ing both linear and non-linear arithmetic and strings. We em-
ploy both solvers because their support for both non-linear
arithmetic and strings is incomplete, causing some queries
to fail to terminate. We therefore run both solvers in paral-
lel for two minutes and fail if neither returns a result in that
time.

We use the same implementation and configuration for
PIE as in the previous experiment. To generate the tests we
employ an initial set of 256 random inputs of the right type.
As described in Section 3.2, the algorithm then captures the
values of all variables whenever control reaches the loop
head, and we retain at most 6400 of these states.

We evaluate our loop invariant inference engine on mul-
tiple sets of benchmarks; the results are shown in Table 3
and a sample of the inferred invariants is shown in Table 4.
First, we have used LOOPINVGEN on all 46 of the bench-
marks that were used to evaluate the HOLA loop invari-
ant engine [13]. These benchmarks require loop invariants
that involve only the theory of linear arithmetic. Table 3
shows each benchmark’s name from the original benchmark
set, the number of calls to the SMT solvers, the number
of calls to the feature learner, the size of the generated in-
variant, and the running time of LOOPINVGEN in seconds.
LOOPINVGEN succeeds in inferring invariants for 43 out of
46 HOLA benchmarks, including three benchmarks which

Shttp://clang.llvm.org/docs/LibTooling.html
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HOLA'’s technique cannot handle (cases 15, 19, and 34). By
construction, these invariants are sufficient to ensure the cor-
rectness of the assertions in these benchmarks. The three
cases on which LOOPINVGEN fails run out of memory dur-
ing PIE’s CNF learning phase.

Second, we have used LOOPINVGEN on 39 of the bench-
marks that were used to evaluate the ICE loop invariant en-
gine [19, 20]. The remaining 19 of their benchmarks cannot
be evaluated with LOOPINVGEN because they use language
features that our program verifier does not support, notably
arrays and recursion. As shown in Table 3, we succeed in in-
ferring invariants for 35 out of the 36 ICE benchmarks that
require linear arithmetic. LOOPINVGEN infers the invariants
fully automatically and with no initial features, while ICE re-
quires a fixed template of features to be specified in advance.
The one failing case is due to a limitation of the current im-
plementation — we treat boolean values as integers, which
causes PIE to consider many irrelevant features for such val-
ues.

We also evaluated LOOPINVGEN on the three ICE bench-
marks whose invariants require non-linear arithmetic. Doing
so simply required us to allow the feature learner to gener-
ate non-linear features; such features were disabled for the
above tests due to the SMT solvers’ limited abilities to rea-
son about non-linear arithmetic. LOOPINVGEN was able to
generate sufficient loop invariants to verify two out of the
three benchmarks. Our approach fails on the third bench-
mark because both SMT solvers fail to terminate on a partic-
ular query. However, this is a limitation of the solvers rather
than of our approach; indeed, if we vary the conflict-group
size, which leads to different SMT queries, then our tool can
succeed on this benchmark.

Third, we have evaluated our approach on the four bench-
marks whose invariants require both arithmetic and string
operations that were used to evaluate another recent loop
invariant inference engine [46]. As shown in Table 3, our
approach infers loop invariants for all of these benchmarks.
The prior approach [46] requires both a fixed set of features
and a fixed boolean structure for the desired invariants, nei-
ther of which is required by our approach.

Finally, we ran all of the above experiments again, but
with PIE replaced by our program-synthesis-based feature
learner. This version succeeds for only 61 out of the 89
benchmarks. Further, for the successful cases, the average
running time is 567 seconds and 1895 MB of memory, ver-
sus 28 seconds and 128 MB (with 573 MB peak memory
usage) for our PIE-based approach.

5. Related Work

We compare our work against three forms of specification
inference in the literature. First, there are several prior ap-
proaches to inferring preconditions given a piece of code and
a postcondition. Closest to PIE are the prior data-driven ap-
proaches. Sankaranarayanan et al. [42] uses a decision-tree
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Table 3: Experimental results for LOOPINVGEN. An invariant’s size is the number of nodes in its abstract syntax tree. The
analysis time is in seconds.

Calls to Calls to Sizes of Analysis Calls to Calls to Sizes of Analysis
Case Solvers Escher Invariants Time Case Solvers Escher Invariants Time
HOLA benchmarks [13] Linear arithmetic benchmarks from ICE [20]
01 7 3 11 21 afnp 12 7 11 22
02 43 17 15 27 cegarl 16 11 12 30
03 31 22 3,7,15 46 cegar2 13 11 19 23
04 4 7 18 cggmp 34 22 143 32
05 7 11 23 countud 6 4 9 17
06 51 26 9,9 54 dec 4 2 3 17
07 111 45 19 116 dillig0l 7 3 11 19
08 4 2 7 18 dillige3 14 7 15 29
09 27 18 3,15,7,22 40 dilliges 7 3 11 21
10 14 7 28 21 dillig0e7 8 4 11 21
11 21 18 15 22 dilligl2 32 18 13,11 44
12 33 19 13,15 45 dilligl5 31 35 55 42
13 46 30 33 54 dilligl?7 24 22 19,11 31
14 9 9 31 22 dilligl9 19 13 31 32
15 26 27 33 39 dillig24 29 18 1,3,11 40
16 9 10 11 22 dillig25 57 31 11,19 74
17 22 17 15,7 31 dillig28 7 2 3,3 19
18 6 5 15 20 dtuc 9 2 3,3 22
19 18 14 27 32 figl 4 2 7 17
20 61 24 33 115 fig3 7 5 7 17
21 23 10 19 23 fig9 7 2 7 19
22 16 11 13 22 formula22 12 11 16 25
23 10 7 11 21 formula2s 11 5 15 21
24 29 19 1,7,11 40 formula27 23 5 19 25
25 83 47 11,19 142 inc2 4 2 7 18
26 90 32 9,9,9 71 inc 4 2 7 17
27 32 20 7,3,7 44 loops 19 12 7,7 28
28 7 2 3,3 20 suml 16 14 21 22
29 66 19 11,11 47 sum3 6 1 3 20
30 18 12 35 29 suméc 41 21 38 32
31 - - - - sum4 6 3 9 17
32 - - - - tacas6 9 8 11 22
33 - - - - trexl 6 2 7,1 19
34 30 20 37 25 trex3 9 7 7 23
35 5 4 11 18 wl 4 2 17
36 128 36 11,15,19,11 113 w2 R - R -
37 13 11 19 22
38 2 38 29 36 Non-linear arithmetic benchmarks from ICE [20]
39 10 5 11 20 multiply 25 19 15 41
40 30 24 19,17 40 sqrt - - - -
a1 17 11 15 27 square 11 7 5 24
42 25 15 50 37 String benchmarks [46]
43 4 2 7 19 a 66 22 110 45
44 14 14 20 26 b 6 5 10
45 60 33 11,9,9 64 [¢ 4 11
46 12 5 21 24 d 3 11
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Table 4: A sample of inferred invariants for C++ bench-
marks.

(HOLA) 07

I:(k=3y)A(z=y)A(z=2)
(ICE linear) dilligl2
"""""""" Li:(a=b)A(t=2sVflag=0)
IL:(x<2)A(y<b)
(ICE linear) suml

I:(i=sn+1)A(sn=0Vsn=nVn>i)
(Strings) c

I:(s=yxj)AN(z>jVs=zx*y)

learner to infer preconditions from good and bad examples.
Gebhr et al. also uses a form of boolean learning from exam-
ples, in order to infer conditions under which two functions
commute [21]. As discussed in Section 2, the key innovation
of PIE over these works is its support for on-demand feature
learning, instead of requiring a fixed set of features to be
specified in advance. In addition to eliminating the problem
of feature selection, PIE’s feature learning ensures that the
produced precondition is both sufficient and necessary for
the given set of tests, which is not guaranteed by the prior
approaches.

There are also several static approaches to precondition
inference. These techniques can provide provably sufficient
(or provably necessary [10]) preconditions. However, unlike
data-driven approaches, they all require the source code to
be available and statically analyzable. The standard weak-
est precondition computation infers preconditions for loop-
free programs [11]. For programs with loops, a backward
symbolic analysis with search heuristics can yield precondi-
tions [3, 8]. Other approaches leverage properties of par-
ticular language paradigms [23], require logical theories
that support quantifier elimination [12, 37], and employ
counterexample-guided abstraction refinement (CEGAR)
with domain-specific refinement heuristics [44, 45]. Finally,
some static approaches to precondition inference target spe-
cific program properties, such as predicates about the heap
structure [2, 34] or about function equivalence [30].

Second, we have shown how PIE can be used to build
a novel data-driven algorithm LOOPINVGEN for inferring
loop invariants that are sufficient to prove that a program
meets its specification. Several prior data-driven approaches
exist for this problem [18-20, 29, 32, 33, 46-49]. As above,
the key distinguishing feature of LOOPINVGEN relative to
this work is its support for feature learning. Other than
one exception [47], which uses support vector machines
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(SVMs) [7] to learn new numerical features, all prior works
employ a fixed set or template of features. In addition,
some prior approaches can only infer restricted forms of
boolean formulas [46—49], while LOOPINVGEN learns arbi-
trary CNF formulas. Finally, the ICE approach [19] requires
a set of “implication counterexamples” in addition to good
and bad examples, which necessitates new algorithms for
learning boolean formulas [20]. In contrast, LOOPINVGEN
can employ any off-the-shelf boolean learner. Unlike LOOP-
INVGEN, ICE is strongly convergent [19]: it restricts invari-
ant inference to a finite set of candidate invariants that is
iteratively enlarged using a dovetailing strategy that eventu-
ally covers the entire search space.

There are also many static approaches to invariant infer-
ence. The HOLA [13] loop invariant generator is based on an
algorithm for logical abduction [12]; we employed a similar
technique to turn PIE into a loop invariant generator. HOLA
requires the underlying logic of invariants to support quan-
tifier elimination, while LOOPINVGEN has no such restric-
tion. Standard invariant generation tools that are based on
abstract interpretation [8, 9], constraint solving [6, 27], or
probabilistic inference [25] require the number of disjunc-
tions to be specified manually. Other approaches [15, 17, 22,
24,26, 36, 41] can handle disjunctions but restrict their num-
ber via trace-based heuristics, custom built abstract domains,
or widening. In contrast, LOOPINVGEN places no a priori
bound on the number of disjunctions.

Third, there has been prior work on data-driven infer-
ence of specifications given only a piece of code as input.
For example, Daikon [14] generates likely invariants at var-
ious points within a given program. Other work leverages
Daikon to generate candidate specifications and then uses an
automatic program verifier to validate them, eliminating the
ones that are not provable [38, 39, 43]. As above, these ap-
proaches employ a fixed set or template of features. Unlike
precondition inference and loop invariant inference, which
require more information from the programmer (e.g., a post-
condition), general invariant inference has no particular goal
and so no notion of “good” and “bad” examples. Hence these
approaches cannot obtain counterexamples to refine candi-
date invariants and cannot use our conflict-based approach
to learn features.

Finally, the work of Cheung et al. [4], like PIE, combines
machine learning and program synthesis, but for a very dif-
ferent purpose: to provide event recommendations to users
of social media. They use the SKETCH system [50] to gener-
ate a set of recommendation functions that each classify all
test inputs, and then they employ SVMs to produce a linear
combination of these functions. PIE instead uses program
synthesis for feature learning, and only as necessary to re-
solve conflicts, and then it uses machine learning to infer
boolean combinations of these features that classify all test
inputs.



6. Conclusion

We have described PIE, which extends the data-driven
paradigm for precondition inference to automatically learn
features on demand. The key idea is to employ a form of
program synthesis to produce new features whenever the
current set of features cannot exactly separate the “good”
and “bad” tests. Feature learning removes the need for users
to manually select features in advance, and it ensures that
PIE produces preconditions that are both sufficient and nec-
essary for the given set of tests. We also described LOOP-
INVGEN, which leverages PIE to provide automatic feature
learning for data-driven loop invariant inference. Our ex-
perimental results indicate that PIE can infer high-quality
preconditions for black-box code and LOOPINVGEN can in-
fer sufficient loop invariants for program verification across
a range of logical theories.
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