
Overfitting in Synthesis: Theory and Practice

Saswat Padhi 1∗
�
, Todd Millstein 1, Aditya Nori 2, and Rahul Sharma 3

1 University of California, Los Angeles, USA
{padhi,todd}@cs.ucla.edu

2 Microsoft Research, Cambridge, UK
adityan@microsoft.com

3 Microsoft Research, Bengaluru, India
rahsha@microsoft.com

Abstract. In syntax-guided synthesis (SyGuS), a synthesizer’s goal is
to automatically generate a program belonging to a grammar of possi-
ble implementations that meets a logical specification. We investigate
a common limitation across state-of-the-art SyGuS tools that perform
counterexample-guided inductive synthesis (CEGIS). We empirically ob-
serve that as the expressiveness of the provided grammar increases, the
performance of these tools degrades significantly.

We claim that this degradation is not only due to a larger search
space, but also due to overfitting. We formally define this phenomenon
and prove no-free-lunch theorems for SyGuS, which reveal a fundamental
tradeoff between synthesizer performance and grammar expressiveness.

A standard approach to mitigate overfitting in machine learning
is to run multiple learners with varying expressiveness in parallel. We
demonstrate that this insight can immediately benefit existing SyGuS
tools. We also propose a novel single-threaded technique called hybrid
enumeration that interleaves different grammars and outperforms the
winner of the 2018 SyGuS competition (Inv track), solving more problems
and achieving a 5× mean speedup.

1 Introduction

The syntax-guided synthesis (SyGuS) framework [3] provides a unified format to
describe a program synthesis problem by supplying (1) a logical specification for
the desired functionality, and (2) a grammar of allowed implementations. Given
these two inputs, a SyGuS tool searches through the programs that are permitted
by the grammar to generate one that meets the specification. Today, SyGuS is at
the core of several state-of-the-art program synthesizers [5, 14, 23, 24, 28], many
of which compete annually in the SyGuS competition [1, 4].

We demonstrate empirically that five state-of-the-art SyGuS tools are very
sensitive to the choice of grammar. Increasing grammar expressiveness allows the
tools to solve some problems that are unsolvable with less-expressive grammars.
However, it also causes them to fail on many problems that the tools are able
to solve with a less expressive grammar. We analyze the latter behavior both
theoretically and empirically and present techniques that make existing tools
much more robust in the face of increasing grammar expressiveness.
∗ Contributed during an internship at Microsoft Research, India.

mailto:padhi@cs.ucla.edu

2 Saswat Padhi, Todd Millstein, Aditya Nori, Rahul Sharma

We restrict our investigation to a widely used approach [6] to SyGuS called
counterexample-guided inductive synthesis (CEGIS) [36, §5]. In this approach,
the synthesizer is composed of a learner and an oracle. The learner iteratively
identifies a candidate program that is consistent with a given set of examples
(initially empty) and queries the oracle to either prove that the program is correct,
i.e., meets the given specification, or obtain a counterexample that demonstrates
that the program does not meet the specification. The counterexample is added
to the set of examples for the next iteration. The iterations continue until a
correct program is found or resource/time budgets are exhausted.
Overfitting. To better understand the observed performance degradation, we
instrumented one of these SyGuS tools (§ 2.2). We empirically observe that for a
large number of problems, the performance degradation on increasing grammar
expressiveness is often accompanied by a significant increase in the number of
counterexamples required. Intuitively, as grammar expressiveness increases so
does the number of spurious candidate programs, which satisfy a given set of
examples but violate the specification. If the learner picks such a candidate, then
the oracle generates a counterexample, the learner searches again, and so on.

In other words, increasing grammar expressiveness increases the chances for
overfitting, a well-known phenomenon in machine learning (ML). Overfitting
occurs when a learned function explains a given set of observations but does not
generalize correctly beyond it. Since SyGuS is indeed a form of function learning,
it is perhaps not surprising that it is prone to overfitting. However, we identify
its specific source in the context of SyGuS — the spurious candidates induced by
increasing grammar expressiveness — and show that it is a significant problem
in practice. We formally define the potential for overfitting (Ω), in Definition 7,
which captures the number of spurious candidates.
No Free Lunch. In the ML community, this tradeoff between expressiveness
and overfitting has been formalized for various settings as no-free-lunch (NFL)
theorems [33, §5.1]. Intuitively such a theorem says that for every learner there
exists a function that cannot be efficiently learned, where efficiency is defined by
the number of examples required. We have proven corresponding NFL theorems
for the CEGIS-based SyGuS setting (Theorems 1 and 2).

A key difference between the ML and SyGuS settings is the notion of m-
learnability. In the ML setting, the learned function may differ from the true
function, as long as this difference (expressed as an error probability) is relatively
small. However, because the learner is allowed to make errors, it is in turn required
to learn given an arbitrary set of m examples (drawn from some distribution). In
contrast, the SyGuS learning setting is all-or-nothing — either the tool synthesizes
a program that meets the given specification or it fails. Therefore, it would be
overly strong to require the learner to handle an arbitrary set of examples.

Instead, we define a much weaker notion of m-learnability for SyGuS, which
only requires that there exist a set of m examples for which the learner succeeds.
Yet, our NFL theorem shows that even this weak notion of learnability can always
be thwarted: given an integer m ≥ 0 and an expressive enough (as a function
of m) grammar, for every learner there exists a SyGuS problem that cannot be

Overfitting in Synthesis: Theory and Practice 3

learned without access to more than m examples. We also prove that overfitting
is inevitable with an expressive enough grammar (Theorems 3 and 4) and that
the potential for overfitting increases with grammar expressiveness (Theorem 5).

Mitigating Overfitting. Inspired by ensemble methods [13] in ML, which aggregate
results from multiple learners to combat overfitting (and underfitting), we propose
PLearn — a black-box framework that runs multiple parallel instances of a
SyGuS tool with different grammars. Although prior SyGuS tools run multiple
instances of learners with different random seeds [7, 20], to our knowledge, this
is the first proposal to explore multiple grammars as a means to improve the
performance of SyGuS. Our experiments indicate that PLearn significantly
improves the performance of five state-of-the-art SyGuS tools — CVC4 [7, 32],
EUSolver [5], LoopInvGen [28], SketchAC [20, 36], and Stoch [3, III F].

However, running parallel instances of a synthesizer is computationally ex-
pensive. Hence, we also devise a white-box approach, called hybrid enumeration,
that extends the enumerative synthesis technique [2] to efficiently interleave ex-
ploration of multiple grammars in a single SyGuS instance. We implement hybrid
enumeration within LoopInvGen4 and show that the resulting single-threaded
learner, LoopInvGen+HE, has negligible overhead but achieves performance
comparable to that of PLearn for LoopInvGen. Moreover, LoopInvGen+HE

significantly outperforms the winner [27] of the invariant-synthesis (Inv) track
of 2018 SyGuS competition [4] — a variant of LoopInvGen specifically tuned
for the competition — including a 5× mean speedup and solving two SyGuS
problems that no tool in the competition could solve.

Contributions. In summary, we present the following contributions:
(§ 2) We empirically observe that, in many cases, increasing grammar expres-

siveness degrades performance of existing SyGuS tools due to overfitting.
(§ 3) We formally define overfitting and prove no-free-lunch theorems for the

SyGuS setting, which indicate that overfitting with increasing grammar
expressiveness is a fundamental characteristic of SyGuS.

(§ 4) We propose two mitigation strategies – (1) a black-box technique that runs
multiple parallel instances of a synthesizer, each with a different grammar,
and (2) a single-threaded enumerative technique, called hybrid enumeration,
that interleaves exploration of multiple grammars.

(§ 5) We show that incorporating these mitigating measures in existing tools
significantly improves their performance.

2 Motivation

In this section, we first present empirical evidence that existing SyGuS tools
are sensitive to changes in grammar expressiveness. Specifically, we demonstrate
that as we increase the expressiveness of the provided grammar, every tool
starts failing on some benchmarks that it was able to solve with less-expressive
grammars. We then investigate one of these tools in detail.
4 Our implementation is available at https://github.com/SaswatPadhi/LoopInvGen.

https://github.com/SaswatPadhi/LoopInvGen

4 Saswat Padhi, Todd Millstein, Aditya Nori, Rahul Sharma

2.1 Grammar Sensitivity of SyGuS Tools

We evaluated 5 state-of-the-art SyGuS tools that use very different techniques:
– SketchAC [20] extends the Sketch synthesis system [36] by combining

both explicit and symbolic search techniques.
– Stoch [3, III F] performs a stochastic search for solutions.
– EUSolver [5] combines enumeration with unification strategies.
– Reynolds et al. [32] extend CVC4 [7] with a refutation-based approach.
– LoopInvGen [28] combines enumeration and Boolean function learning.

〈b〉 |= true | false | 〈Bool variables〉
| (not b) | (or b b) | (and b b)

〈i〉 |= 〈Int constants〉 | 〈Int variables〉
I Additional rule in Equalities grammar :
〈b〉 |=+ (= i i)

I Additional rules in Intervals grammar :
〈b〉 |=+ (> i i) | (>= i i)

| (< i i) | (<= i i)

I Additional rules in Octagons grammar :
〈i〉 |=+ (+ i i) | (- i i)

I Additional rule in Polyhedra grammar :
〈i〉 |=+ (*S i i)

I Additional rule in Polynomials grammar :
〈i〉 |=+ (*N i i)

I Additional rule in Peano grammar :
〈i〉 |=+ (div i i) | (mod i i)

Fig. 1. Grammars of quantifier-
free predicates over integers 5

We ran these five tools on 180 invariant-
synthesis benchmarks, which we describe in
§ 5. We ran the benchmarks with each of
the six grammars of quantifier-free predicates,
which are shown in Fig. 1. These grammars
correspond to widely used abstract domains in
the analysis of integer-manipulating programs
— Equalities, Intervals [11], Octagons [25], Poly-
hedra [12], algebraic expressions (Polynomials)
and arbitrary integer arithmetic (Peano) [29].
The *S operator denotes scalar multiplication,
e.g., (*S 2 x), and *N denotes nonlinear multi-
plication, e.g., (*N x y).

In Fig. 2, we report our findings on run-
ning each benchmark on each tool with each
grammar, with a 30-minute wall-clock time-
out. For each 〈tool, grammar〉 pair, the y-axis
shows the number of failing benchmarks that
the same tool is able to solve with a less-
expressive grammar. We observe that, for each tool, the number of such failures
increases with the grammar expressiveness. For instance, introducing the scalar
multiplication operator (*S) causes CVC4 to fail on 21 benchmarks that it is
able to solve with Equalities (4/21), Intervals (18/21), or Octagons (10/21). Similarly,
adding nonlinear multiplication causes LoopInvGen to fail on 10 benchmarks
that it can solve with a less-expressive grammar.

Fig. 2. For each grammar, each tool, the ordinate shows the number of bench-
marks that fail with the grammar but are solvable with a less-expressive grammar.
5 We use the |=+ operator to append new rules to previously defined nonterminals.

Overfitting in Synthesis: Theory and Practice 5

Increase (↑) Unchanged (=) Decrease (↓)

Expressiveness ↑ ∧ Time ↑ → Rounds ? 27 % 67 % 6 %
Expressiveness ↑ ∧ Rounds ↑ → Time ? 79 % 6 % 15 %

Fig. 3. Observed correlation between synthesis time and number of rounds, upon
increasing grammar expressiveness, with LoopInvGen [28] on 180 benchmarks

2.2 Evidence for Overfitting

To better understand this phenomenon, we instrumented LoopInvGen [28] to
record the candidate expressions that it synthesizes and the number of CEGIS
iterations (called rounds henceforth). We compare each pair of successful runs of
each of our 180 benchmarks on distinct grammars.6 In 65% of such pairs, we
observe performance degradation with the more expressive grammar. We also
report the correlation between performance degradation and number of rounds
for the more expressive grammar in each pair in Fig. 3.

In 67% of the cases with degraded performance upon increased grammar
expressiveness, the number of rounds remains unaffected — indicating that this
slowdown is mainly due to a larger search space. However, there is significant
evidence of performance degradation due to overfitting as well. We note an
increase in the number of rounds for 27% of the cases with degraded performance.
Moreover, we notice performance degradation in 79% of all cases that required
more rounds on increasing grammar expressiveness.

Thus, a more expressive grammar not only increases the search space, but also
makes it more likely for LoopInvGen to overfit — select a spurious expression,
which the oracle rejects with a counterexample, hence requiring more rounds. In
the remainder of this section, we demonstrate this overfitting phenomenon on
the verification problem shown in Fig. 4, an example by Gulwani and Jojic [17],
which is the fib_19 benchmark in the Inv track of SyGuS-Comp 2018 [4].

1 assume (0 ≤ n ∧ 0 ≤ m ≤ n)
2 assume (x = 0 ∧ y = m)
3 while (x < n) do
4 x← x+ 1
5 if (x > m) then y ← y + 1
6 assert (y = n)

Fig. 4. The fib_19 benchmark [17]

For Fig. 4, we require an inductive in-
variant that is strong enough to prove that
the assertion on line 6 always holds. In
the SyGuS setting, we need to synthesize
a predicate I : Z 4 → B defined on a sym-
bolic state σ = 〈m,n, x, y〉, that satisfies
∀σ : ϕ(I, σ) for the specification ϕ:7

ϕ(I, σ) def=
(
0 ≤ n ∧ 0 ≤ m ≤ n ∧ x = 0 ∧ y = m

)
=⇒ I(σ) (precondition)

∧ ∀σ′ :
(
I(σ) ∧ T (σ, σ′)

)
=⇒ I(σ′) (inductiveness)

∧
(
x ≥ n ∧ I(σ)

)
=⇒ y = n (postcondition)

where σ′ = 〈m′, n′, x′, y′〉 denotes the new state after one iteration, and T is a
transition relation that describes the loop body:

T (σ, σ′) def= (x < n) ∧ (x′ = x+ 1) ∧ (m′ = m) ∧ (n′ = n)
∧
[

(x′ ≤ m ∧ y′ = y) ∨ (x′ > m ∧ y′ = y + 1)
]

6 We ignore failing runs since they require an unknown number of rounds.
7 We use B, N, and Z to denote the sets of all Boolean values, all natural numbers

(positive integers), and all integers respectively.

6 Saswat Padhi, Todd Millstein, Aditya Nori, Rahul Sharma

Increasing expressiveness →
Equalities Intervals Octagons Polyhedra Polynomials Peano
× 0.32 s 2.49 s 2.48 s 55.3 s 68.0 s

FAIL (19 rounds) (57 rounds) (57 rounds) (76 rounds) (88 rounds)

(a) Synthesis time and number of CEGIS iterations (rounds) with various grammars

16: (x ≥ n) ∨ (x+ 1 < n) ∨ (m ≥ x ∧ m = y)

28: (x = y) ∨ (y +m− n = x) ∨ (x+ 2 < n)

57: (m = y) ∨ (x ≥ m ∧ x ≥ y)

(b) Sample predicates with Polyhedra

16: (x ≥ n) ∨ (x + 1 < n) ∨
(2y = n) ∨ (y (m− 1) = m)

28: (y = 1) ∨ (y = 0) ∨ (m < 1) ∨ (x2y > 1)

57: (x + 1 ≥ n) ∨ (x + 2 < n) ∨
((m− n)(x− y) = 1)

(c) Sample predicates with Peano
Solution in both grammars: (n ≥ y) ∧ (y ≥ x) ∧ ((m = y) ∨ (x ≥ m ∧ x ≥ y))

Fig. 5. Performance of LoopInvGen [28] on the fib_19 benchmark (Fig. 4). In
(b) and (c), we show predicates generated at various rounds (numbered in bold).

In Fig. 5(a), we report the performance of LoopInvGen on fib_19 (Fig. 4)
with our six grammars (Fig. 1). It succeeds with all but the least-expressive
grammar. However, as grammar expressiveness increases, the number of rounds
increase significantly — from 19 rounds with Intervals to 88 rounds with Peano.

LoopInvGen converges to the exact same invariant with both Polyhedra and
Peano but requires 30 more rounds in the latter case. In Figs. 5(b) and 5(c), we
list some expressions synthesized with Polyhedra and Peano respectively. These
expressions are solutions to intermediate subproblems — the final loop invariant
is a conjunction of a subset of these expressions [28, §3.2]. Observe that the
expressions generated with the Peano grammar are quite complex and unlikely to
generalize well. Peano’s extra expressiveness leads to more spurious candidates,
increasing the chances of overfitting and making the benchmark harder to solve.

3 SyGuS Overfitting in Theory

In this section, first we formalize the counterexample-guided inductive synthesis
(CEGIS) approach [36] to SyGuS, in which examples are iteratively provided
by a verification oracle. We then state and prove no-free-lunch theorems, which
show that there can be no optimal learner for this learning scheme. Finally, we
formalize a natural notion of overfitting for SyGuS and prove that the potential
for overfitting increases with grammar expressiveness.

3.1 Preliminaries
We borrow the formal definition of a SyGuS problem from prior work [3]:
Definition 1 (SyGuS Problem). Given a background theory T, a function
symbol f : X → Y , and constraints on f : (1) a semantic constraint, also called a
specification, φ(f, x) over the vocabulary of T along with f and a symbolic input x,
and (2) a syntactic constraint, also called a grammar, given by a (possibly infinite)
set E of expressions over the vocabulary of the theory T; find an expression e ∈ E
such that the formula ∀x ∈ X : φ(e, x) is valid modulo T.

Overfitting in Synthesis: Theory and Practice 7

We denote this SyGuS problem as 〈fX→Y |φ, E〉 T and say that it is satisfiable
iff there exists such an expression e, i.e., ∃ e ∈ E : ∀x ∈ X : φ(e, x). We call e a
satisfying expression for this problem, denoted as e |= 〈fX→Y |φ, E〉 T.

Recall, we focus on a common class of SyGuS learners, namely those that
learn from examples. First we define the notion of input-output (IO) examples
that are consistent with a SyGuS specification:
Definition 2 (Input-Output Example). Given a specification φ defined on
f : X → Y over a background theory T, we call a pair 〈x, y〉 ∈ X × Y an input-
output (IO) example for φ, denoted as 〈x, y〉 p≈ T φ iff it is satisfied by some valid
interpretation of f within T, i.e.,

〈x, y〉 p≈ T φ
def= ∃ e∗ ∈ T : e∗(x) = y ∧

(
∀x ∈ X : φ(e∗, x)

)
The next two definitions respectively formalize the two key components of a

CEGIS-based SyGuS tool: the verification oracle and the learner.
Definition 3 (Verification Oracle). Given a specification φ defined on a
function f : X → Y over theory T, a verification oracle Oφ is a partial function
that given an expression e, either returns ⊥ indicating ∀x ∈ X : φ(e, x) holds, or
gives a counterexample 〈x, y〉 against e, denoted as e ×φ 〈x, y〉, such that

e ×φ 〈x, y〉
def= ¬φ(e, x) ∧ e(x) 6= y ∧ 〈x, y〉 p≈ T φ

We omit φ from the notations Oφ and ×φwhen it is clear from the context.
Definition 4 (CEGIS-based Learner). A CEGIS-based learner LO(q, E) is a
partial function that given an integer q ≥ 0, a set E of expressions, and access
to an oracle O for a specification φ defined on f : X → Y , queries O at most q
times and either fails with ⊥ or generates an expression e ∈ E. The trace[

e0 × 〈x0, y0〉, . . . , ep−1 × 〈xp−1, yp−1〉, ep
]

where 0 ≤ p ≤ q
summarizes the interaction between the oracle and the learner. Each ei denotes
the ith candidate for f and 〈xi, yi〉 is a counterexample ei, i.e.,(

∀j < i : ei(xj) = yj ∧ φ(ei, xj)
)
∧
(
ei ×φ 〈xi, yi〉

)
Note that we have defined oracles and learners as (partial) functions, and

hence as deterministic. In practice, many SyGuS tools are deterministic and this
assumption simplifies the subsequent theorems. However, we expect that these
theorems can be appropriately generalized to randomized oracles and learners.

3.2 Learnability and No Free Lunch

In the machine learning (ML) community, the limits of learning have been
formalized for various settings as no-free-lunch theorems [33, §5.1]. Here, we
provide a natural form of such theorems for CEGIS-based SyGuS learning.

In SyGuS, the learned function must conform to the given grammar, which
may not be fully expressive. Therefore we first formalize grammar expressiveness:
Definition 5 (k-Expressiveness). Given a domain X and range Y , a grammar
E is said to be k-expressive iff E can express exactly k distinct X → Y functions.

8 Saswat Padhi, Todd Millstein, Aditya Nori, Rahul Sharma

A key difference from the ML setting is our notion of m-learnability, which
formalizes the number of examples that a learner requires in order to learn a
desired function. In the ML setting, a function is considered to m-learnable by a
learner if it can be learned using an arbitrary set of m i.i.d. examples (drawn from
some distribution). This makes sense in the ML setting since the learned function
is allowed to make errors (up to some given bound on the error probability), but
it is much too strong for the all-or-nothing SyGuS setting.

Instead, we define a much weaker notion of m-learnability for CEGIS-based
SyGuS, which only requires that there exist a set of m examples that allows the
learner to succeed. The following definition formalizes this notion.

Definition 6 (CEGIS-based m-Learnability). Given a SyGuS problem S =
〈fX→Y |φ, E〉 T and an integer m ≥ 0, we say that S is m-learnable by a CEGIS-
based learner L iff there exists a verification oracle O under which L can learn a
satisfying expression for S with at most m queries to O, i.e., ∃O : LO(m, E) |= S.

Finally we state and prove the no-free-lunch (NFL) theorems, which make
explicit the tradeoff between grammar expressiveness and learnability. Intuitively,
given an integer m and an expressive enough (as a function of m) grammar, for
every learner there exists a SyGuS problem that cannot be solved without access
to at least m+ 1 examples. This is true despite our weak notion of learnability.

Put another way, as grammar expressiveness increases, so does the number
of examples required for learning. On one extreme, if the given grammar is
1-expressive, i.e., can express exactly one function, then all satisfiable SyGuS
problems are 0-learnable — no examples are needed because there is only one
function to learn — but there are many SyGuS problems that cannot be satisfied
by this function. On the other extreme, if the grammar is |Y ||X|-expressive, i.e.,
can express all functions from X to Y , then for every learner there exists a SyGuS
problem that requires all |X| examples in order to be solved.

Below we first present the NFL theorem for the case when the domain X
and range Y are finite. We then generalize to the case when these sets may be
countably infinite. The proofs of these theorems can be found in Appendix A.1.

Theorem 1 (NFL in CEGIS-based SyGuS on Finite Sets). Let X and Y
be two arbitrary finite sets, T be a theory that supports equality, E be a grammar
over T, and m be an integer such that 0 ≤ m < |X|. Then, either:

– E is not k-expressive for any k >
∑m
i= 0

|X|! |Y |i
(|X| − i)! , or

– for every CEGIS-based learner L, there exists a satisfiable SyGuS problem
S = 〈fX→Y |φ, E〉 T such that S is not m-learnable by L. Moreover, there exists
a different CEGIS-based learner for which S is m-learnable.

Theorem 2 (NFL in CEGIS-based SyGuS on Countably Infinite Sets).
Let X be an arbitrary countably infinite set, Y be an arbitrary finite or countably
infinite set,T be a theory that supports equality, E be a grammar over T, and m
be an integer such that m ≥ 0. Then, either:
– E is not k-expressive for any k > ℵ0, where ℵ0

def= |N|, or

Overfitting in Synthesis: Theory and Practice 9

– for every CEGIS-based learner L, there exists a satisfiable SyGuS problem
S = 〈fX→Y |φ, E〉 T such that S is not m-learnable by L. Moreover, there exists
a different CEGIS-based learner for which S is m-learnable.

3.3 Overfitting
Last, we relate the above theory to the notion of overfitting from ML. In the
context of SyGuS, overfitting can potentially occur whenever there are multiple
candidate expressions that are consistent with a given set of examples. Some of
these expressions may not generalize to satisfy the specification, but the learner
has no way to distinguish among them (using just the given set of examples) and
so can “guess” incorrectly. We formalize this idea through the following measure:
Definition 7 (Potential for Overfitting). Given a problem S = 〈fX→Y |φ, E〉 T
and a set Z of IO examples for φ, we define the potential for overfitting Ω as the
number of expressions in E that are consistent with Z but do not satisfy S, i.e.,

Ω(S, Z) def=
{∣∣{e ∈ E | e 6|= S ∧ ∀〈x, y〉 ∈ Z : e(x) = y

}∣∣ ∀z ∈ Z : z p≈ T φ

⊥ (undefined) otherwise
Intuitively, a zero potential for overfitting means that overfitting is not possible

on the given problem with respect to the given set of examples, because there is
no spurious candidate. A positive potential for overfitting means that overfitting
is possible, and higher values imply more spurious candidates and hence more
potential for a learner to choose the “wrong” expression.

The following theorems connect our notion of overfitting to the earlier NFL
theorems by showing that overfitting is inevitable with an expressive enough
grammar. We provide their proofs in Appendix A.2.

Theorem 3 (Overfitting in SyGuS on Finite Sets). Let X and Y be two
arbitrary finite sets, m be an integer such that 0 ≤ m < |X|, T be a theory
that supports equality, and E be a k-expressive grammar over T for some k >
|X|! |Y |m

m! (|X| −m)! . Then, there exists a satisfiable SyGuS problem S = 〈fX→Y |φ, E〉 T
such that Ω(S, Z) > 0, for every set Z of m IO examples for φ.

Theorem 4 (Overfitting in SyGuS on Countably Infinite Sets). Let X be
an arbitrary countably infinite set, Y be an arbitrary finite or countably infinite set,
T be a theory that supports equality, and E be a k-expressive grammar over T for
some k > ℵ0. Then, there exists a satisfiable SyGuS problem S = 〈fX→Y |φ, E〉 T
such that Ω(S, Z) > 0, for every set Z of m IO examples for φ.

Finally, it is straightforward to show that as the expressiveness of the grammar
provided in a SyGuS problem increases, so does its potential for overfitting.

Theorem 5 (Overfitting Increases with Expressiveness). Let X and Y
be two arbitrary sets, T be an arbitrary theory, E1 and E2 be grammars over T
such that E1 ⊆ E2, φ be an arbitrary specification over T and a function symbol
f : X → Y , and Z be a set of IO examples for φ. Then, we have

Ω
(
〈fX→Y |φ, E1〉 T , Z

)
≤ Ω

(
〈fX→Y |φ, E2〉 T , Z

)

10 Saswat Padhi, Todd Millstein, Aditya Nori, Rahul Sharma

Algorithm 1 The PLearn framework for SyGuS tools.
1 func PLearn (T : Synthesis Tool, 〈fX→Y |φ, E〉 T : Problem, E1...p : Subgrammars)
2 I Requires: ∀ Ei ∈ E1...p : Ei ⊆ E
3 parallel for i← 1, . . . , p do
4 Si ← 〈fX→Y |φ, Ei〉 T
5 ei ← T (Si)
6 if ei 6= ⊥ then return ei

7 return ⊥

4 Mitigating Overfitting

Ensemble methods [13] in machine learning (ML) are a standard approach to
reduce overfitting. These methods aggregate predictions from several learners
to make a more accurate prediction. In this section we propose two approaches,
inspired by ensemble methods in ML, for mitigating overfitting in SyGuS. Both
are based on the key insight from §3.3 that synthesis over a subgrammar has a
smaller potential for overfitting as compared to that over the original grammar.

4.1 Parallel SyGuS on Multiple Grammars
Our first idea is to run multiple parallel instances of a synthesizer on the same
SyGuS problem but with grammars of varying expressiveness. This framework,
called PLearn, is outlined in Algorithm 1. It accepts a synthesis tool T , a SyGuS
problem 〈fX→Y |φ, E〉 T, and subgrammars E1...p,8 such that Ei ⊆ E . The parallel
for construct creates a new thread for each iteration. The loop in PLearn creates
p copies of the SyGuS problem, each with a different grammar from E1...p, and
dispatches each copy to a new instance of the tool T . PLearn returns the first
solution found or ⊥ if none of the synthesizer instances succeed.

Since each grammar in E1...p is subsumed by the original grammar E , any ex-
pression found by PLearn is a solution to the original SyGuS problem. Moreover,
from Theorem 5 it is immediate that PLearn indeed reduces overfitting.
Theorem 6 (PLearn Reduces Overfitting). Given a SyGuS problem S =
〈fX→Y |φ, E〉 T, if PLearn is instantiated with S and subgrammars E1...p such that
∀ Ei ∈ E1...p : Ei ⊆ E, then for each Si = 〈fX→Y |φ, Ei〉 T constructed by PLearn,
we have that Ω(Si, Z) ≤ Ω(S, Z) on any set Z of IO examples for φ.

A key advantage of PLearn is that it is agnostic to the synthesizer’s im-
plementation. Therefore, existing SyGuS learners can immediately benefit from
PLearn, as we demonstrate in §5.1. However, running p parallel SyGuS instances
can be prohibitively expensive, both computationally and memory-wise. The
problem is worsened by the fact that many existing SyGuS tools already use
multiple threads, e.g., the SketchAC [20] tool spawns 9 threads. This motivates
our hybrid enumeration technique described next, which is a novel synthesis
algorithm that interleaves exploration of multiple grammars in a single thread.
8 We use the shorthand X1,...,n to denote the sequence 〈X1, . . . ,Xn〉.

Overfitting in Synthesis: Theory and Practice 11

4.2 Hybrid Enumeration
Hybrid enumeration extends the enumerative synthesis technique, which enu-
merates expressions within a given grammar in order of size and returns the
first candidate that satisfies the given examples [2]. Our goal is to simulate
the behavior of PLearn with an enumerative synthesizer in a single thread.
However, a straightforward interleaving of multiple PLearn threads would be
highly inefficient because of redundancies – enumerating the same expression
(which is contained in multiple grammars) multiple times. Instead, we propose
a technique that (1) enumerates each expression at most once, and (2) reuses
previously enumerated expressions to construct larger expressions.

To achieve this, we extend a widely used [2, 15, 30] synthesis strategy, called
component-based synthesis [21], wherein the grammar of expressions is induced
by a set of components, each of which is a typed operator with a fixed arity. For
example, the grammars shown in Fig. 1 are induced by integer components (such
as 1, +, mod, =, etc.) and Boolean components (such as true, and, or, etc.). Below,
we first formalize the grammar that is implicit in this synthesis style.

Definition 8 (Component-Based Grammar). Given a set C of typed com-
ponents, we define the component-based grammar E as the set of all expressions
formed by well-typed component application over C, i.e.,

E = { c(e1, . . . , ea) | (c : τ1 × · · · × τa → τ) ∈ C ∧ e1 . . . a ⊂ E
∧ e1 : τ1 ∧ · · · ∧ ea : τa }

where e : τ denotes that the expression e has type τ .

We denote the set of all components appearing in a component-based grammar E
as components(E). Henceforth, we assume that components(E) is known (explicitly
provided by the user) for each E . We also use values(E) to denote the subset of
nullary components (variables and constants) in components(E), and operators(E)
to denote the remaining components with positive arities.

The closure property of component-based grammars significantly reduces the
overhead of tracking which subexpressions can be combined together to form
larger expressions. Given a SyGuS problem over a grammar E , hybrid enumeration
requires a sequence E1...p of grammars such that each Ei is a component-based
grammar and that E1 ⊂ · · · ⊂ Ep ⊆ E . Next, we explain how the subset relation-
ship between the grammars enables efficient enumeration of expressions.

Given grammars E1 ⊂ · · · ⊂ Ep, observe that an expression of size k in Ei
may only contain subexpressions of size {1, . . . , (k − 1)} belonging to E1...i. This
allows us to enumerate expressions in an order such that each subexpression e is
synthesized (and cached) before any expressions that have e as a subexpression.
We call an enumeration order that ensures this property a well order.

Definition 9 (Well Order). Given arbitrary grammars E1...p, we say that a
strict partial order / on E1...p × N is a well order iff
∀ Ea, Eb ∈ E1...p : ∀ k1, k2 ∈ N : [Ea ⊆ Eb ∧ k1 < k2] =⇒ (Ea, k1) / (Eb, k2)

Motivated by Theorem 5, our implementation of hybrid enumeration uses a
particular well order that incrementally increases the expressiveness of the space

12 Saswat Padhi, Todd Millstein, Aditya Nori, Rahul Sharma

of expressions. For a rough measure of the expressiveness (Definition 5) of a
pair (E , k), i.e., the set of expressions of size k in a given grammar E , we simply
overapproximate the number of syntactically distinct expressions:
Theorem 7. Let E1...p be component-based grammars and Ci = components(Ei).
Then, the following strict partial order /∗ on E1...p × N is a well order
∀ Ea, Eb ∈ E1...p : ∀m,n ∈ N : (Ea,m) /∗ (Eb, n) ⇐⇒ | Ca |m < | Cb |n

We now describe the main hybrid enumeration algorithm, which is listed in
Algorithm 2. The HEnum function accepts a SyGuS problem 〈fX→Y |φ, E〉 T, a set
E1...p of component-based grammars such that E1 ⊂ · · · ⊂ Ep ⊆ E , a well order
/, and an upper bound q ≥ 0 on the size of expressions to enumerate. In lines
4–8, we first enumerate all values and cache them as expressions of size one. In
general C[j, k][τ] contains expressions of type τ and size k from Ej \ Ej−1. In line
9 we sort (grammar, size) pairs in some total order consistent with /. Finally, in
lines 10–20, we iterate over each pair (Ej , k) and each operator from E1...j and
invoke the Divide procedure (Algorithm 3) to carefully choose the operator’s
argument subexpressions ensuring (1) correctness – their sizes sum up to k − 1,
(2) efficiency – expressions are enumerated at most once, and (3) completeness –
all expressions of size k in Ej are enumerated.

The Divide algorithm generates a set of locations for selecting arguments
to an operator. Each location is a pair (x, y) indicating that any expression
from C[x, y][τ] can be an argument, where τ is the argument type required by

Algorithm 2 Hybrid enumeration to combat overfitting in SyGuS
1 func HEnum (〈fX→Y |φ, E〉 T : Problem, E1...p : Grammars, / : WO, q : Max. Size)
2 I Requires: component-based grammars E1 ⊂ · · · ⊂ Ep ⊆ E and v as the input variable
3 C ← {}
4 for i← 1 to p do
5 V ← if i = 1 then values(E1) else [values(Ei) \ values(Ei−1)]
6 for each (e : τ) ∈ V do
7 C[i, 1][τ]← C[i, 1][τ] ∪ {e}
8 if ∀x ∈ X : φ(λv. e, x) then return λv. e

9 R← Sort(/, E1...p × {2, . . . , q})
10 for i← 1 to |R | do
11 (Ej , k)← R[i]
12 for l← 1 to j do
13 O ← if l = 1 then operators(E1) else [operators(El) \ operators(El−1)]
14 for each (o : τ1 × · · · × τa → τ) ∈ O do
15 L← Divide(a, k − 1, l, j, 〈〉)
16 for each

〈
(x1, y1), . . . , (xa, ya)

〉
∈ L do

17 for each e1 . . . a ∈ C[x1, y1][τ1]× · · · × C[xa, ya][τa] do
18 e← o(e1, . . . , ea)
19 C[j, k][τ]← C[j, k][τ] ∪ {e}
20 if ∀x ∈ X : φ(λv. e, x) then return λv. e

21 return ⊥

Overfitting in Synthesis: Theory and Practice 13

Algorithm 3 An algorithm to divide a given size budget among subexpressions 9

1 func Divide (a : Arity, q : Size, l : Op. Level, j : Expr. Level, α : Accumulated Args.)
2 I Requires: 1 ≤ a ≤ q ∧ l ≤ j
3 if a = 1 then
4 if l = j ∨ ∃ 〈x, y〉 ∈ α : x = j then return

{
(1, q) � α, . . . , (j, q) � α

}
5 return

{
(j, q) � α

}
6 L = {}
7 for u← 1 to j do
8 for v ← 1 to (q − a+ 1) do
9 L← L ∪ Divide(a− 1, q − v, l, j, (u, v) � α)
10 return L

the operator. Divide accepts an arity a for an operator o, a size budget q, the
index l of the least-expressive grammar containing o, the index j of the least-
expressive grammar that should contain the constructed expressions of the form
o(e1, . . . , ea), and an accumulator α that stores the list of argument locations.
In lines 7–9, the size budget is recursively divided among a − 1 locations. In
each recursive step, the upper bound (q− a+ 1) on v ensures that we have a size
budget of at least q − (q − a+ 1) = a− 1 for the remaining a− 1 locations. This
results in a call tree such that the accumulator α at each leaf node contains the
locations from which to select the last a−1 arguments, and we are left with some
size budget q ≥ 1 for the first argument e1. Finally in lines 4–5, we carefully
select the locations for e1 to ensure that o(e1, . . . , ea) has not been synthesized
before — either o ∈ components(Ej) or at least one argument belongs to Ej \Ej−1.

We conclude this section by stating some desirable properties satisfied by
HEnum. The proofs of the following theorems can be found in Appendix A.3.
Theorem 8 (HEnum is Complete up to Size q). Given a SyGuS problem
S = 〈fX→Y |φ, E〉 T, let E1...p be component-based grammars over theory T such
that E1 ⊂ · · · ⊂ Ep = E, / be a well order on E1...p × N, and q ≥ 0 be an upper
bound on size of expressions. Then, HEnum(S, E1...p,/, q) will eventually find a
satisfying expression if there exists one with size ≤ q.

Theorem 9 (HEnum is Efficient). Given a SyGuS problem S = 〈fX→Y |φ, E〉 T,
let E1...p be component-based grammars over theory T such that E1 ⊂ · · · ⊂ Ep ⊆ E,
/ be a well order on E1...p×N, and q ≥ 0 be an upper bound on size of expressions.
Then, HEnum(S, E1...p,/, q) will enumerate each distinct expression at most once.

5 Experimental Evaluation

In this section we empirically evaluate PLearn and HEnum. Our evaluation
uses a set of 180 synthesis benchmarks,10 consisting of all 127 official benchmarks
from the Inv track of 2018 SyGuS competition [4] augmented with benchmarks
from the 2018 Software Verification competition (SV-Comp) [8] and challenging
9 We use � as the cons operator for sequences, e.g., x � 〈y, z〉 = 〈x, y, z〉.
10 All benchmarks are available at https://github.com/SaswatPadhi/LoopInvGen.

https://github.com/SaswatPadhi/LoopInvGen

14 Saswat Padhi, Todd Millstein, Aditya Nori, Rahul Sharma

(a) LoopInvGen [28] (b) CVC4 [7, 32]

Solid blue curves (
�

) show
original failure counts.

Dashed orange curves (•) show
failure counts with PLearn.

Timeout = 30 min.
(wall-clock)

(c) Stoch [3, III F] (d) SketchAC [20, 36] (e) EUSolver [5]

Fig. 6. The number of failures on increasing grammar expressiveness, for state-
of-the-art SyGuS tools, with and without the PLearn framework (Algorithm 1)

verification problems proposed in prior work [9, 10]. All these synthesis tasks
are defined over integer and Boolean values, and we evaluate them with the six
grammars described in Fig. 1. We have omitted benchmarks from other tracks of
the SyGuS competition as they either require us to construct E1...p (§ 4) by hand
or lack verification oracles. All our experiments use an 8-core Intel ® Xeon ® E5
machine clocked at 2.30GHz with 32GB memory running Ubuntu ® 18.04.

5.1 Robustness of PLearn

For five state-of-the-art SyGuS solvers – (a) LoopInvGen [28], (b) CVC4 [7, 32],
(c) Stoch [3, III F], (d) SketchAC [8, 20], and (e) EUSolver [5] – we have
compared the performance across various grammars, with and without the
PLearn framework (Algorithm 1). In this framework, to solve a SyGuS problem
with the pth expressiveness level from our six integer-arithmetic grammars (see
Fig. 1), we run p independent parallel instances of a SyGuS tool, each with one of
the first p grammars. For example, to solve a SyGuS problem with the Polyhedra
grammar, we run four instances of a solver with the Equalities, Intervals, Octagons
and Polyhedra grammars. We evaluate these runs for each tool, for each of the
180 benchmarks and for each of the six expressiveness levels.

Fig. 6 summarizes our findings. Without PLearn the number of failures
initially decreases and then increases across all solvers, as grammar expressiveness
increases. However, with PLearn the tools incur fewer failures at a given
level of expressiveness, and there is a trend of decreased failures with increased
expressiveness. Thus, we have demonstrated that PLearn is an effective measure
to mitigate overfitting in SyGuS tools and significantly improve their performance.

5.2 Performance of Hybrid Enumeration
To evaluate the performance of hybrid enumeration, we augment an existing
synthesis engine with HEnum (Algorithm 2). We modify our LoopInvGen

tool [28], which is the best-performing SyGuS synthesizer from Fig. 6. Internally,

Overfitting in Synthesis: Theory and Practice 15

(a) Failures on increasing grammar expressiveness

Grammar M
[
τ[P]
τ[H]

]
M
[
τ[H]
τ[L]

]
Equalities 1.00 1.00
Intervals 1.91 1.04

Octagons 2.84 1.03
Polyhedra 3.72 1.01

Polynomials 4.62 1.00
Peano 5.49 0.97

(b) Median(M) overhead

Fig. 7. L - LoopInvGen, H - LoopInvGen+HE, P - PLearn (LoopInvGen).
H is not only significantly robust against increasing grammar expressiveness, but
it also has a smaller total-time cost (τ) than P and a negligible overhead over L.

LoopInvGen leverages Escher [2], an enumerative synthesizer, which we replace
with HEnum. We make no other changes to LoopInvGen. We evaluate the
performance and resource usage of this solver, LoopInvGen+HE, relative to
the original LoopInvGen with and without PLearn (Algorithm 1).
Performance. In Fig. 7(a), we show the number of failures across our six grammars
for LoopInvGen, LoopInvGen+HE and LoopInvGen with PLearn, over our
180 benchmarks. LoopInvGen+HE has a significantly lower failure rate than
LoopInvGen, and the number of failures decreases with grammar expressiveness.
Thus, hybrid enumeration is a good proxy for PLearn.
Resource Usage. To estimate how computationally expensive each solver is, we
compare their total-time cost (τ). Since LoopInvGen and LoopInvGen+HE are
single-threaded, for them we simply use the wall-clock time for synthesis as the
total-time cost. However, for PLearn with p parallel instances of LoopInvGen,
we consider the total-time cost as p times the wall-clock time for synthesis.

In Fig. 7(b), we show the median overhead (ratio of τ) incurred by PLearn

over LoopInvGen+HE and LoopInvGen+HE over LoopInvGen, at various
expressiveness levels. As we move to grammars of increasing expressiveness, the
total-time cost of PLearn increases significantly, while the total-time cost of
LoopInvGen+HE essentially matches that of LoopInvGen.

5.3 Competition Performance
Finally, we evaluate the performance of LoopInvGen+HE on the benchmarks
from the Inv track of the 2018 SyGuS competition [4], against the official winning
solver, which we denote LIG [27] — a version of LoopInvGen [28] that has been
extensively tuned for this track. In the competition, there are some invariant-
synthesis problems where the postcondition itself is a satisfying expression. LIG

starts with the postcondition as the first candidate and is extremely fast on such
programs. For a fair comparison, we added this heuristic to LoopInvGen+HE

as well. No other change was made to LoopInvGen+HE.
LoopInvGen solves 115 benchmarks in a total of 2191 seconds whereas

LoopInvGen+HE solves 117 benchmarks in 429 seconds, for a mean speedup
of over 5×. Moreover, no entrants to the competition could solve [4] the two
additional benchmarks (gcnr_tacas08 and fib_20) that LoopInvGen+HE solves.

16 Saswat Padhi, Todd Millstein, Aditya Nori, Rahul Sharma

6 Related Work

The most closely related work to ours investigates overfitting for verification
tools [35]. Our work differs from theirs in several respects. First, we address
the problem of overfitting in CEGIS-based synthesis. Second, we formally define
overfitting and prove that all synthesizers must suffer from it, whereas they only
observe overfitting empirically. Third, while they use cross-validation to combat
overfitting in tuning a specific hyperparameter of a verifier, our approach is to
search for solutions at different expressiveness levels.

The general problem of efficiently searching a large space of programs for
synthesis has been explored in prior work. Lee et al. [24] use a probabilistic model,
learned from known solutions to synthesis problems, to enumerate programs in
order of their likelihood. Other approaches employ type-based pruning of large
search spaces [26, 31]. These techniques are orthogonal to, and may be combined
with, our approach of exploring grammar subsets.

Our results are widely applicable to existing SyGuS tools, but some tools fall
outside our purview. For instance, in programming-by-example (PBE) systems [18,
§7], the specification consists of a set of input-output examples. Since any program
that meets the given examples is a valid satisfying expression, our notion of
overfitting does not apply to such tools. However in a recent work, Inala and
Singh [19] show that incrementally increasing expressiveness can also aid PBE
systems. They report that searching within increasingly expressive grammar
subsets requires significantly fewer examples to find expressions that generalize
better over unseen data. Other instances where the synthesizers can have a free
lunch, i.e., always generate a solution with a small number of counterexamples,
include systems that use grammars with limited expressiveness [16, 21, 34].

Our paper falls in the category of formal results about SyGuS. In one such
result, Jha and Seshia [22] analyze the effects of different kinds of counterexamples
and of providing bounded versus unbounded memory to learners. Notably, they
do not consider variations in “concept classes” or “program templates,” which
are precisely the focus of our study. Therefore, our results are complementary: we
treat counterexamples and learners as opaque and instead focus on grammars.

7 Conclusion

Program synthesis is a vibrant research area; new and better synthesizers are
being built each year. This paper investigates a general issue that affects all
CEGIS-based SyGuS tools. We recognize the problem of overfitting, formalize it,
and identify the conditions under which it must occur. Furthermore, we provide
mitigating measures for overfitting that significantly improve the existing tools.

Acknowledgement. We thank Guy Van den Broeck and the anonymous reviewers for
helpful feedback for improving this work, and the organizers of the SyGuS competition
for making the tools and benchmarks publicly available.

This work was supported in part by the National Science Foundation (NSF) under
grants CCF-1527923 and CCF-1837129. The lead author was also supported by an
internship and a PhD Fellowship from Microsoft Research.

Overfitting in Synthesis: Theory and Practice 17

References

1. The SyGuS Competition. http://sygus.org/comp/ (2019), Accessed: 2019-05-10
2. Albarghouthi, A., Gulwani, S., Kincaid, Z.: Recursive Program Synthesis. In:

Computer Aided Verification - 25th International Conference, CAV, Proceedings.
Lecture Notes in Computer Science, vol. 8044, pp. 934–950. Springer (2013),
https://doi.org/10.1007/978-3-642-39799-8_67

3. Alur, R., Bodík, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-Guided Synthesis.
In: Formal Methods in Computer-Aided Design, FMCAD. pp. 1–8. IEEE (2013),
http://ieeexplore.ieee.org/document/6679385/

4. Alur, R., Fisman, D., Padhi, S., Singh, R., Udupa, A.: SyGuS-Comp 2018: Results
and Analysis. CoRR abs/1904.07146 (2019), http://arxiv.org/abs/1904.07146

5. Alur, R., Radhakrishna, A., Udupa, A.: Scaling Enumerative Program Synthesis
via Divide and Conquer. In: Tools and Algorithms for the Construction and
Analysis of Systems - 23rd International Conference, TACAS, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 10205, pp. 319–336
(2017), https://doi.org/10.1007/978-3-662-54577-5_18

6. Alur, R., Singh, R., Fisman, D., Solar-Lezama, A.: Search-Based Program Synthesis.
Commun. ACM 61(12), 84–93 (2018), https://doi.org/10.1145/3208071

7. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Computer Aided Verification - 23rd Interna-
tional Conference, CAV, Proceedings. Lecture Notes in Computer Science, vol. 6806,
pp. 171–177. Springer (2011), https://doi.org/10.1007/978-3-642-22110-1_14

8. Beyer, D.: Software Verification with Validation of Results - (Report on SV-
COMP 2017). In: Tools and Algorithms for the Construction and Analysis of
Systems - 23rd International Conference, TACAS, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 10206, pp. 331–349 (2017),
https://doi.org/10.1007/978-3-662-54580-5_20

9. Bounov, D., DeRossi, A., Menarini, M., Griswold, W.G., Lerner, S.: Inferring Loop
Invariants through Gamification. In: Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, CHI. p. 231. ACM (2018), https:
//doi.org/10.1145/3173574.3173805

10. Bradley, A.R., Manna, Z., Sipma, H.B.: The Polyranking Principle. In: Automata,
Languages and Programming, 32nd International Colloquium, ICALP, Proceedings.
Lecture Notes in Computer Science, vol. 3580, pp. 1349–1361. Springer (2005),
https://doi.org/10.1007/11523468_109

11. Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Generalized
Type Unions. In: Language Design for Reliable Software. pp. 77–94 (1977), https:
//doi.org/10.1145/800022.808314

12. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints Among
Variables of a Program. In: Conference Record of the Fifth Annual ACM Symposium
on Principles of Programming Languages. pp. 84–96. ACM Press (1978), https:
//doi.org/10.1145/512760.512770

13. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Multiple Classi-
fier Systems, First International Workshop, MCS, Proceedings. Lecture Notes in
Computer Science, vol. 1857, pp. 1–15. Springer (2000), https://doi.org/10.1007/
3-540-45014-9_1

http://sygus.org/comp/
https://doi.org/10.1007/978-3-642-39799-8_67
http://ieeexplore.ieee.org/document/6679385/
http://arxiv.org/abs/1904.07146
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1145/3208071
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1145/3173574.3173805
https://doi.org/10.1145/3173574.3173805
https://doi.org/10.1007/11523468_109
https://doi.org/10.1145/800022.808314
https://doi.org/10.1145/800022.808314
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1007/3-540-45014-9_1

18 Saswat Padhi, Todd Millstein, Aditya Nori, Rahul Sharma

14. Ezudheen, P., Neider, D., D’Souza, D., Garg, P., Madhusudan, P.: Horn-ICE
Learning for Synthesizing Invariants and Contracts. PACMPL 2(OOPSLA), 131:1–
131:25 (2018), https://doi.org/10.1145/3276501

15. Feng, Y., Martins, R., Geffen, J.V., Dillig, I., Chaudhuri, S.: Component-Based
Synthesis of Table Consolidation and Transformation Tasks From Examples. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI. pp. 422–436. ACM (2017), https://doi.org/
10.1145/3062341.3062351

16. Godefroid, P., Taly, A.: Automated Synthesis of Symbolic Instruction Encodings
From I/O Samples. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI. pp. 441–452. ACM (2012), https://doi.org/
10.1145/2254064.2254116

17. Gulwani, S., Jojic, N.: Program Verification as Probabilistic Inference. In: Proceed-
ings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL. pp. 277–289. ACM (2007), https://doi.org/10.1145/
1190216.1190258

18. Gulwani, S., Polozov, O., Singh, R.: Program Synthesis. Foundations and Trends in
Programming Languages 4(1-2), 1–119 (2017), https://doi.org/10.1561/2500000010

19. Inala, J.P., Singh, R.: WebRelate: Integrating Web Data with Spreadsheets using
Examples. PACMPL 2(POPL), 2:1–2:28 (2018), https://doi.org/10.1145/3158090

20. Jeon, J., Qiu, X., Solar-Lezama, A., Foster, J.S.: Adaptive Concretization for
Parallel Program Synthesis. In: Computer Aided Verification - 27th International
Conference, CAV, Proceedings, Part II. pp. 377–394. Lecture Notes in Computer
Science, Springer (2015), https://doi.org/10.1007/978-3-319-21668-3_22

21. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-Guided Component-Based
Program Synthesis. In: Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineering - Volume 1, ICSE. pp. 215–224. ACM (2010),
https://doi.org/10.1145/1806799.1806833

22. Jha, S., Seshia, S.A.: A Theory of Formal Synthesis via Inductive Learning. Acta
Informatica 54(7), 693–726 (2017), https://doi.org/10.1007/s00236-017-0294-5

23. Le, X.D., Chu, D., Lo, D., Le Goues, C., Visser, W.: S3: Syntax- and Semantic-
Guided Repair Synthesis via Programming by Examples. In: Proceedings of the 11th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE. pp. 593–604.
ACM (2017), https://doi.org/10.1145/3106237.3106309

24. Lee, W., Heo, K., Alur, R., Naik, M.: Accelerating Search-Based Program Synthesis
using Learned Probabilistic Models. In: Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2018.
pp. 436–449. ACM (2018), https://doi.org/10.1145/3192366.3192410

25. Miné, A.: The Octagon Abstract Domain. In: Proceedings of the Eighth Working
Conference on Reverse Engineering, WCRE. p. 310. IEEE Computer Society (2001),
https://doi.org/10.1109/WCRE.2001.957836

26. Osera, P., Zdancewic, S.: Type-and-Example-Directed Program Synthesis. In:
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI. pp. 619–630. ACM (2015), https://doi.org/
10.1145/2737924.2738007

27. Padhi, S., Sharma, R., Millstein, T.: LoopInvGen: A Loop Invariant Generator
based on Precondition Inference. CoRR abs/1707.02029 (2018), http://arxiv.
org/abs/1707.02029

28. Padhi, S., Sharma, R., Millstein, T.D.: Data-Driven Precondition Inference with
Learned Features. In: Proceedings of the 37th ACM SIGPLAN Conference on

https://doi.org/10.1145/3276501
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/2254064.2254116
https://doi.org/10.1145/2254064.2254116
https://doi.org/10.1145/1190216.1190258
https://doi.org/10.1145/1190216.1190258
https://doi.org/10.1561/2500000010
https://doi.org/10.1145/3158090
https://doi.org/10.1007/978-3-319-21668-3_22
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1007/s00236-017-0294-5
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.1109/WCRE.2001.957836
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2737924.2738007
http://arxiv.org/abs/1707.02029
http://arxiv.org/abs/1707.02029

Overfitting in Synthesis: Theory and Practice 19

Programming Language Design and Implementation, PLDI. pp. 42–56. ACM
(2016), https://doi.org/10.1145/2908080.2908099

29. Peano, G.: Calcolo geometrico secondo l’Ausdehnungslehre di H. Grassmann: pre-
ceduto dalla operazioni della logica deduttiva, vol. 3. Fratelli Bocca (1888)

30. Perelman, D., Gulwani, S., Grossman, D., Provost, P.: Test-driven synthesis. In:
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI. pp. 408–418. ACM (2014), https://doi.org/10.1145/2594291.2594297

31. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program Synthesis from Polymorphic
Refinement Types. In: Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI. pp. 522–538. ACM
(2016), https://doi.org/10.1145/2908080.2908093

32. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.W.: Counterexample-
Guided Quantifier Instantiation for Synthesis in SMT. In: Computer Aided Ver-
ification - 27th International Conference, CAV, Proceedings, Part II. Lecture
Notes in Computer Science, vol. 9207, pp. 198–216. Springer (2015), https:
//doi.org/10.1007/978-3-319-21668-3_12

33. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press (2014)

34. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A Data
Driven Approach for Algebraic Loop Invariants. In: Programming Languages and
Systems - 22nd European Symposium on Programming, ESOP, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS,
Proceedings. Lecture Notes in Computer Science, vol. 7792, pp. 574–592. Springer
(2013), https://doi.org/10.1007/978-3-642-37036-6_31

35. Sharma, R., Nori, A.V., Aiken, A.: Bias-Variance Tradeoffs in Program Analysis.
In: The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL. pp. 127–138. ACM (2014), http://doi.acm.org/10.
1145/2535838.2535853

36. Solar-Lezama, A.: Program Sketching. STTT 15(5-6), 475–495 (2013), https:
//doi.org/10.1007/s10009-012-0249-7

https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2594291.2594297
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/978-3-642-37036-6_31
http://doi.acm.org/10.1145/2535838.2535853
http://doi.acm.org/10.1145/2535838.2535853
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7

20 Saswat Padhi, Todd Millstein, Aditya Nori, Rahul Sharma

A Proofs of Theorems

A.1 No-Free-Lunch Theorems (§ 3.2)

Theorem 1 (NFL in CEGIS-based SyGuS on Finite Sets). Let X and Y
be two arbitrary finite sets, T be a theory that supports equality, E be a grammar
over T, and m be an integer such that 0 ≤ m < |X|. Then, either:
– E is not k-expressive for any k >

∑m
i= 0

|X|! |Y |i
(|X| − i)! , or

– for every CEGIS-based learner L, there exists a satisfiable SyGuS problem
S = 〈fX→Y |φ, E〉 T such that S is not m-learnable by L. Moreover, there exists
a different CEGIS-based learner for which S is m-learnable.

Proof. First, note that there are t =
∑m
i= 0

|X|! |Y |i
(|X| − i)! distinct traces (sequences

of counterexamples) of length at most m over X and Y . Now, consider some
CEGIS-based learner L, and suppose E is k-expressive for some k > t. Then,
since the learner can deterministically choose at most t candidates for the t
traces, there must be at least one function f that is expressible in E , but does
not appear in the trace of LO(m, E) for any oracle O.

Let e be an expression in E that implements the function f . Then, we can define
the specification φ(f, x) def= f(x) = e(x) and the SyGuS problem S = 〈fX→Y |φ, E〉 T.
By construction, S is satisfiable since e |= S, but we have that LO(m, E) 6|= S for
all oracles O. So, by Definition 6, we have that S is not m-learnable by L.

However, we can construct a learner L′ such that S is m-learnable by L′. We
construct L′ such that L′ always produces e as its first candidate expression for
any trace. The result then follows by Definition 6. ut

Theorem 2 (NFL in CEGIS-based SyGuS on Countably Infinite Sets).
Let X be an arbitrary countably infinite set, Y be an arbitrary finite or countably
infinite set, T be a theory that supports equality, E be a grammar over T, and m
be an integer such that m ≥ 0. Then, either:
– E is not k-expressive for any k > ℵ0, where ℵ0

def= |N|, or
– for every CEGIS-based learner L, there exists a satisfiable SyGuS problem

S = 〈fX→Y |φ, E〉 T such that S is not m-learnable by L. Moreover, there exists
a different CEGIS-based learner for which S is m-learnable.

Proof. Consider some CEGIS-based learner L, and suppose E is k-expressive for
some k > ℵ0. Note that there are

∑m
i= 0

|X|! |Y |i
(|X| − i)! distinct traces of length at most

m over X and Y . Let us overapproximate each |X|! |Y |
i

(|X| − i)! as (|X| |Y |)m, and thus
the number of distinct traces as (m+ 1) (|X| |Y |)m. We have two cases for Y :
1. Y is finite i.e., |X| = ℵ0 and |Y | < ℵ0. Then, the number of distinct traces is

at most (m+ 1) (|X| |Y |)m = (ℵ0 |Y |)m = ℵ0. Or,
2. Y is countably infinite i.e., |X| = |Y | = ℵ0. Then, the number of distinct

traces is at most (m+ 1) (|X| |Y |)m = (ℵ0 ℵ0)m = ℵ0.
Thus, the number of distinct traces is at most ℵ0, i.e., countably infinite. Since

the number of distinct functions k > ℵ0, the claim follows using a construction
similar to the proof of Theorem 1. ut

Overfitting in Synthesis: Theory and Practice 21

A.2 Overfitting Theorems (§ 3.3)

Theorem 3 (Overfitting in SyGuS on Finite Sets). Let X and Y be two
arbitrary finite sets, m be an integer such that 0 ≤ m < |X|, T be a theory
that supports equality, and E be a k-expressive grammar over T for some k >
|X|! |Y |m

m! (|X| −m)! . Then, there exists a satisfiable SyGuS problem S = 〈fX→Y |φ, E〉 T
such that Ω(S, Z) > 0, for every set Z of m IO examples for φ.

Proof. First, note that there are t = |X|! |Y |m
m! (|X| −m)! distinct ways of constructing a

set of m IO examples, over X and Y . Now, suppose E is k-expressive for some
k > t. Then, there must be at least one function f that is expressible in E , but
every set of m IO examples that f is consistent with is also satisfied by some
other expressible function.

Let e be an expression in E that implements the function f . Then, we can define
the specification φ(f, x) def= f(x) = e(x) and the SyGuS problem S = 〈fX→Y |φ, E〉 T.
The claim then immediately follows from Definition 7. ut

Theorem 4 (Overfitting in SyGuS on Countably Infinite Sets). Let X be
an arbitrary countably infinite set, Y be an arbitrary finite or countably infinite set,
T be a theory that supports equality, and E be a k-expressive grammar over T for
some k > ℵ0. Then, there exists a satisfiable SyGuS problem S = 〈fX→Y |φ, E〉 T
such that Ω(S, Z) > 0, for every set Z of m IO examples for φ.

Proof. Let us overapproximate the number of distinct ways of constructing a
set of m IO examples, |X|! |Y |m

m! (|X| −m)! as (|X| |Y |)m. Using cardinal arithmetic, as
shown in the the proof of Theorem 2, this number is always at most ℵ0. Then
the claim follows using a construction similar to the proof of Theorem 3. ut

Theorem 5 (Overfitting Increases with Expressiveness). Let X and Y
be two arbitrary sets, T be an arbitrary theory, E1 and E2 be grammars over T
such that E1 ⊆ E2, φ be an arbitrary specification over T and a function symbol
f : X → Y , and Z be a set of IO examples for φ. Then, we have

Ω
(
〈fX→Y |φ, E1〉 T , Z

)
≤ Ω

(
〈fX→Y |φ, E2〉 T , Z

)
Proof. If E1 ⊆ E2, then for any set Z ⊆ X × Y of IO examples, we have

{e ∈ E1 | ∀〈x, y〉 ∈ Z : e(x) = y} ⊆ {e ∈ E2 | ∀〈x, y〉 ∈ Z : e(x) = y}

The claim immediately follows from this observation and Definition 7. ut

A.3 Properties of Hybrid Enumeration (§ 4.2)

Lemma 1. Let E1 and E2 be two arbitrary component-based grammars. Then, if
E1 ⊆ E2, it must also be the case that components(E1) ⊆ components(E2), where
components(Ei) denotes the set of all components appearing in Ei.

22 Saswat Padhi, Todd Millstein, Aditya Nori, Rahul Sharma

Proof. Let C1 = components(E1), C2 = components(E2), and E1 ⊆ E2. Suppose
C1 6⊆ C2. Then, there must be at least one component c such that c ∈ C1 \ C2.
By definition of components(E1), the component c must appear in at least one
expression e ∈ E1. However, since c 6∈ C2, it must be the case that e 6∈ E2, thus
contradicting E1 ⊆ E2. Hence, our assumption C1 6⊆ C2 must be false. ut

Theorem 7. Given component-based grammars E1...p, the following strict partial
order /∗ on E1...p × N is a well order
∀ Ea, Eb ∈ E1...p : ∀m,n ∈ N : (Ea,m) /∗ (Eb, n) ⇐⇒ | Ca |m < | Cb |n

where Ci = components(Ei) denotes the set of all components appearing in Ei.

Proof. Let Ea and Eb be two component-based grammars in E1...p. By Lemma 1,
we have that Ea ⊆ Eb =⇒ components(E1) ⊆ components(E2). The claim then
immediately follows from Definition 9. ut

Definition 10 (jk-Uniqueness). Given grammars E1 ⊆ · · · ⊆ Ep, we say that
an expression e of size k is jk-unique with respect to E1...p if it is contained in
Ej but not in E(j−1). We define U [E1...p]kj as the maximal such set of expressions,
i.e.,

U [E1...p]kj
def=
{
e ∈ Ej | size(e) = k ∧ e 6∈ E(j−1)

}
Lemma 2. Let E1 ⊆ · · · ⊆ Ep be p component-based grammars. Then, for any
expression o(e1, . . . , ea) ∈ U [E1...p]kj , if the operator o belongs to operators(Eq)
such that q < j, at least one argument must belong to Ej but not E(j−1), i.e.,

o ∈ operators(Eq) ∧ q < j =⇒ ∃ e ∈ e1 . . . a : e ∈ Ej ∧ e 6∈ E(j−1)

Proof. Consider an arbitrary expression e∗ = o(e1, . . . , ea) ∈ U [E1...p]kj such that
o ∈ operators(Eq) ∧ q < j. Suppose

[
∀ e ∈ e1 . . . a : e 6∈ Ej ∨ e ∈ E(j−1)

]
. Then, for

any argument subexpression e, we have the following three possibilities:
7 e 6∈ Ej ∧ e ∈ E(j−1) is impossible since E(j−1) ⊆ Ej .
7 e 6∈ Ej ∧ e 6∈ E(j−1) is also impossible, by Definition 8, due to the closure

property of component-based grammars.
7 e ∈ Ej ∧ e ∈ E(j−1) must be false for at least one argument subexpression.

Otherwise, since o ∈ operators(E(j−1)) and E(j−1) is closed under opera-
tor application by Definition 8, e∗ ∈ E(j−1) must be true. However, by
Definition 10, we have that e∗ ∈ U [E1...p]kj =⇒ e∗ 6∈ E(j−1).

Therefore, our assumption
[
∀ e ∈ e1 . . . a : e 6∈ Ej ∨ e ∈ E(j−1)

]
must be false. ut

Lemma 3. Let E0 = {} and E1 ⊆ · · · ⊆ Ep be p component-based grammars.
Then, for any l ≥ 1 and any operator o ∈ operators(El) \ operators(El−1) of arity
a, Divide(a, k − 1, l, j, 〈〉) generates the following set L of all possible distinct
locations for selecting the arguments for o such that o(e1, . . . , ea) ∈ U [E1...p]kj :

L =
{〈

(j1, k1), . . . , (ja, ka)
〉 | o(e1, . . . , ea) ∈ U [E1...p]kj
∧ ∀ 1 ≤ i ≤ a : ei ∈ U [E1...p]kiji

}

Overfitting in Synthesis: Theory and Practice 23

Proof. In lines 7–9 of Algorithm 3, the top-level Divide(a, k− 1, l, j, 〈〉) call first
recursively creates a call tree of height a− 1 such that the accumulator α at each
leaf node contains the locations for selecting the last a− 1 arguments from. Since
u in line 7 ranges over {1, . . . , j} and v in line 8 ranges over {1, . . . , (k − 2)},
the call tree must be exhaustive by construction. Concretely, the values of α
at the the leaf nodes must capture every possible sequence of a − 1 locations,〈
(j1, k1), . . . , (j(a−1), k(a−1))

〉
, such that k1 + · · ·+ k(a−1) ≤ k − 2.

Finally at the leaf nodes of the call tree, lines 4–5 are triggered to select
locations for the first argument. The naïve approach of simply assigning the
remaining size to each grammar in E1...j would be exhaustive, but may lead to
enumerating other expressions o(e1, . . . , ea) 6∈ U [E1...p]kj when l < j. Therefore,
we check if l < j and no location (x, y) in α satisfies x = j, in which case we
assign the remaining size to only Ej in line 5. Lemma 2 shows that this check is
sufficient to guarantee that we only enumerate expressions in U [E1...p]kj . ut

Theorem 8 (HEnum is Complete up to Size q). Given a SyGuS problem
S = 〈fX→Y |φ, E〉 T, let E1...p be component-based grammars over theory T such
that E1 ⊂ · · · ⊂ Ep = E, / be a well order on E1...p × N, and q ≥ 0 be an upper
bound on size of expressions. Then, HEnum(S, E1...p,/, q) will eventually find a
satisfying expression if there exists one with size ≤ q.

Proof. First, we observe that every expression e ∈ E must belong to somemaximal
set of jk-unique expressions with respect to E1...p:

∀ e ∈ E : ∃ j ∈ {1, . . . , p} : ∃ k ∈ {1, . . . , q} : e ∈ U [E1...p]kj
We show that C[j, k] in HEnum (Algorithm 2) stores U [E1...p]kj , into various

C[j, k][τ] lists based on the expression type τ . Since HEnum computes C[j, k] for
each j ∈ {1, . . . , p} and each k ∈ {1, . . . , q}, it must enumerate every expression
in E with size at most q, and thus eventually find e.

The base cases C[i, 1] = U [E1...p]1
i are straightforward. The inductive case

follows from Lemma 3. For each (j, k) ∈ {1, . . . , p}×{1, . . . , q} and each operator
in E1...j , we invoke Divide (Algorithm 3) to generate all possible locations for the
operator’s arguments such that the final expression is contained in U [E1...p]kj . Lines
16–20 in HEnum then populate C[j, k] as U [E1...p]kj by applying the operator to
subexpressions of appropriate types drawn from these locations. ut

Lemma 4. Given grammars E1 ⊆ · · · ⊆ Ep, for any distinct pairs (j, k) and
(j′, k′) the sets U [E1...p]kj and U [E1...p]k

′

j′ must be disjoint, i.e.,

∀ j, k, j′, k′ : j 6= j′∨ k 6= k′ =⇒ U [E1...p]kj ∩ U [E1...p]k
′

j′ = {}

Proof. When k 6= k′, it is straightforward to show that U [E1...p]kj ∩ U [E1...p]k
′

j′ = {},
since an expression cannot be of size k and k′ at the same time.

We now prove the claim for the case when j 6= j′ by contradiction. Suppose
there exists an expression e ∈ U [E1...p]kj ∩ U [E1...p]kj′ . Without loss of generality,
assume j > j′, and therefore Ej ⊇ Ej′ . But then, by Definition 10, it must be
the case that e 6∈ Ej′ and thus e 6∈ U [E1...p]kj′ . Therefore, our assumption that
U [E1...p]kj ∩ U [E1...p]kj′ 6= {} must be false. ut

24 Saswat Padhi, Todd Millstein, Aditya Nori, Rahul Sharma

Theorem 9 (HEnum is Efficient). Given a SyGuS problem S = 〈fX→Y |φ, E〉 T,
let E1...p be component-based grammars over theory T such that E1 ⊂ · · · ⊂ Ep ⊆ E,
/ be a well order on E1...p×N, and q ≥ 0 be an upper bound on size of expressions.
Then, HEnum(S, E1...p,/, q) will enumerate each distinct expression at most once.

Proof. As shown in the proof of Theorem 8, C[j, k] in HEnum (Algorithm 2)
stores U [E1...p]kj . Then, by Lemma 4, we immediately have that all pairs C[j, k]
and C[j′, k′] of synthesized expressions are disjoint when j 6= j′ or k 6= k′.

Furthermore, although each C[j, k] is implemented as a list, we show that any
two expressions within any C[j, k] list must be syntactically distinct. The base
cases C[i, 1] are straightforward. For the inductive case, observe that if each list
C[j1, k1], . . . , C[ja, ka] only contains syntactically distinct expressions, then all
tuples within C[j1, k1]×· · ·×C[ja, ka] must also be distinct. Thus, if an operator
o with arity a is applied to subexpressions drawn from the cross product, i.e.,
〈e1, . . . , ea〉 ∈ C[j1, k1]× · · ·×C[ja, ka], then all resulting expressions of the form
o(e1, . . . , ea) must be syntactically distinct. Thus, by structural induction, we
have that in any list C[j, k] all contained expressions are syntactically distinct. ut

	Overfitting in Synthesis: Theory and Practice

